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Motivation:

Glass Transition



Seestück (G. Richter)



Air-Sea Interaction



Model

  

Force  F

Wind ua

Current uo

Friction

Parameters :
▶ mass ratio ocean/atmosphere: m
▶ friction coefficient (nonlinear): cD



Variability

Atmos Ocean

Momentum Transfer Between an Atmospheric…

Fig. 1 For Cd = 1 × 10−4. Map of the average vorticity (s−1), averaged over 1000 days, starting from
day 1700 in the atmosphere (e) and in the ocean (f). Map of the vorticity anomaly (s−1), averaged over 20
days, starting from day 2680, with respect to the 1000-day average in the atmosphere (c) and in the ocean (d).
Map of the instantaneous vorticity anomaly (s−1) at day 2675, with respect to the 1000-day average in the
atmosphere (a) and in the ocean (b)

123



Variability

Atmos Ocean

atmosphere ocean

Figure 12.2: For Cd = 8 × 10−4. Map of the average vorticity, averaged over 1000
days, starting from day 1700(bottom). Map of the vorticity anomaly, averaged over 20
days, starting from day 2680, with respect to the 1000day average (middle). Map of the
instantaneous vorticity anomaly at day 2675, with respect to the 1000 days average (top).
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Variability

Atmos Ocean

Figure 12.7: Space variability (black) and time variability (white) for four values of the
drag coefficient in the atmosphere (right) and in the ocean (left). For the ocean the
variability are multiplied by 100 for the three lower drag coefficients.
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(Moulin & Wirth 2016, BLM 160)



Three Phases



Glassy State

Cristaline solid Glass

Glasses have the mechanical rigidity of crystals, but the random
disordered arrangement of molecules that characterizes liquids.



Seestück (G. Richter)



Seestück(G.Richter)



Brownian motion



Einstein relation (1905)

▶ macroscopic: Stoke’s law : γ =
6πηr

m

▶ microscopic: random walk (1D): D =
⟨x2⟩
2t

=
R
γ2

▶ equipartition :
kBT
m

= ⟨u(t)2⟩ = R
γ

D =
kBT
γm

=
RT

N6πηr



Langevin Equation (1908)

m∂tu(t) = −mγu(t) + F (t)

dissipation: γ macroscopic systematic constant
fluctuationn: F (t) microscopic random ⟨F (t)⟩ = 0

m
2
∂ttx2 − mu2 = −γm

2
∂tx2 + xF

m
2
∂tt⟨x2⟩ − m⟨u2⟩ = −mγ

2
∂t⟨x2⟩+���⟨xF ⟩

m
2
∂t⟨∂tx2⟩+ mγ

2
⟨∂tx2⟩ = kBT

t ≫ 1
γ

→ ⟨∂tx2⟩ = 2kBT
mγ



Langevin Equation, Itô calculus (1940)
u(0) = 0

u(t) = u(0)e−γt + e−γt
∫ t

0
F (t ′)eγt ′dt ′

⟨u(t)2⟩ = e−2γt
∫ t

0

∫ t

0
⟨F (t1)F (t2)⟩eγ(t1+t2)dt2dt1

⟨F (t1)F (t2)⟩ = 2Rδ(t2 − t1)

Fluctuation dissipation relation:

⟨u(t)2⟩ = R
γ



Model

  

Force  F

Wind ua

Current uo

Friction

Parameters :
▶ mass ratio ocean/atmosphere: m
▶ friction coefficient (nonlinear): cD



2D Turbulence

Atmos Ocean



2D Turbulence

⟨u2
a⟩A ⟨uauo⟩A, ⟨u2

o⟩A



Model

  

Wind ua

Current uo

Friction

∂tuo = −S(uo − ua)

stat. solution ↔ 2D turbulence model



Model

  

Force  F

Wind ua

Current uo

Friction

∂tua = −Sm(ua − uo) + F
∂tuo = −S (uo − ua)



Linear Local Model

∂tus = −SMus + F
∂tut = F

us(t) =

∫ t

0
eSM(t ′−t)F (t ′)dt ′

ut(t) =

∫ t

0
F (t ′)dt ′

ua(t) =
1
M

(ut + mus) =
1
M

(∫ t

0
F (t ′)dt ′ + m

∫ t

0
eSM(t ′−t)F (t ′)dt ′

)
uo(t) =

1
M

(ut − us) =
1
M

(∫ t

0
F (t ′)dt ′ −

∫ t

0
eSM(t ′−t)F (t ′)dt ′

)



Linear Local Model : 2nd order moments

〈u2
a〉Ω =

R

M2

(

2t +
4m

SM
(1 − e

−SMt) +
m2

SM
(1 − e

−2SMt)

)

〈u2
o〉Ω =

R

M2

(

2t −
4

SM
(1 − e

−SMt) +
1

SM
(1 − e

−2SMt)

)

〈uauo〉Ω =
R

M2

(

2t +
2(m − 1)

SM
(1 − e

−SMt)−
m

SM
(1 − e

−2SMt))

)

.

For t ≫ (SM)−1
:

〈(ua − uo)
2〉Ω =

R

SM

〈u2
a − u

2
o〉Ω =

R(M + 2)

SM2

〈uauo − u
2
o〉Ω =

R

SM2



Fluctuation Dissipation Relation (FDR)

1

2
∂t〈u

2
o〉Ω = S〈uauo − u

2
o〉Ω =

R(1 − e−SMt)2

M2

For t ≫ (SM)−1 :

R

M2
=

SR

M2

(

2t +
m − 2

SM
− 2t +

3

SM

)



Quadratic Local Model

∂tua = − S̃m|us|us + F
∂tuo = S̃ |us|us

with us = ua − uo, ut = ua + muo.

∂tus = −S̃M|us|us + F
∂tut = F

Linear Langevin eq. with eddy friction:

Seddy

S̃
=

⟨(u2
s)

3/2⟩
⟨u2

s⟩3/2
⟨(u2

s)
1/2⟩ =

(
µ22R
S̃M

)1/3

.

µGaussian =
⟨(u2

s)
3/2⟩

⟨u2
s⟩3/2

=
3
√
π

4
≈ 1.3293404.



Lin. vs. Quadratic Langevin eq.

〈u2
a〉A, 〈u2

o〉A, 〈uauo〉A

µ =
2

3

Γ(2/3)

Γ(4/3)
≈ 1.2449; (Gaussian) =

3
√
π

4
≈ 1.329



Stochastic differential equation:
Integrating many independent realisation:

∂tu = F (u, ω) with, ω ∈ Ω

→ measure moments :

⟨un⟩Ω, ⟨f (u)⟩Ω

(“Lagrangian approach”)



Fokker-Planck equation:
Obtain PDE for the time evolution of the pdf:

∂tP(u, t) = ∂u

(
a(u)P(u) +

1
2
∂u [b(u)P(u)]

)
→ solve equation if possible and obtain moments by integration:

⟨un⟩ =
∫

undP, ⟨f (u)⟩ =
∫

f (u)dP

(“Eulerian approach”)



Linear model: SDE ↔ Fokker-Planck equation:
SDE:

∂tus = −SMus + F
∂tut = F

Fokker-Planck

∂tPs = ∇uv ·
[
SMusPs +

1
2
∇uv Ps

]
∂tPt =

1
2
∇uv · ∇uv Pt

βexp(−βe) β(t)exp(−β(t)e)



Non-linear model: SDE ↔ Fokker-Planck equation:
SDE:

∂tus = − S̃M|us|us + F (1)
∂tut = F (2)

Fokker-Planck

∂tPs = ∇uv ·
[
S̃MususPs +

ν

2
∇uv Ps

]
∂tPt =

ν

2
∇uv · ∇uv Ps

β2/3

Γ(5/3)
exp(−βe3/2) β(t)exp(−β(t)e)



FDR 2D : 〈u2
o〉, 〈uauo〉

1

2
∂t〈u

2
o〉A = S〈uauo − u

2
o〉A

S̃num =
∂t〈u

2
o〉

2µGauss

√

〈(ua − uo)2〉〈(uauo − u
2
o)〉

S̃num

S̃
= 0.9

(Wirth 2017, JPO)



Fluctuation Dissipation Theorem, Response Theory

Auto-correlation:

C(t ,∆t) = ⟨x(t)xt(t +∆t)⟩
Decay of a perturbation:

⟨x(t +∆t)⟩ = χ(t ,∆t)x̄

The FDT:

C(t ,∆t)C(t ,0)−1 = χ(t ,∆t).



Fluctuation Dissipation Theorem (2)

The Fluctuation Dissipation Theorem is proofed for:
▶ linear models with white forcing.
▶ linear models with colored forcing, when the phase space

is augmented by the forcing variable (otherwise dynamics
at time t0 is correlated to forcing at time t > t0)

(Wirth 2019, NPG, paper of the month)



Power input (mechanical)

ua(10m)

uo(0m)

uo(15m)

shear

P = τ⃗ u⃗o

τ = CD|u⃗a − u⃗o|(u⃗a − u⃗o)

Z
τ

=

∫ t+τ
t P(t ′)dt ′

τ⟨P(t)⟩



Fluctuation theorem

The pdf of time averages is considered.

Prob(z1 < Z
τ
< z2) =

∫ z2

z1

pdfZτ (z)dz

pdf is non Gaussian



Fluctuation theorem

The symmetry function of the pdfs:

SZ
τ (z) = ln

(
pZ

τ (z)
pZ

τ (−z)

)
= στz,

z τ

exp(−S) S/z





Power input (mechanical)

ua(10m)

uo(0m)

uo(15m)

shear

P = τ⃗ · u⃗o(15m)

τ⃗ = CD|u⃗a(10m)− u⃗o(0m)|(u⃗a(10m)− u⃗o(0m))



Fluctuation theorem
(20o − 30oN, 20o − 30oW ), res 0.5o (sub-trop. gyre)

1993–2017, res 6h
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p(z) S(z)/τ
▶ Pdf non Gaussian
▶ With increasing averaging time negative events for the

power-input to the ocean occure less often.
▶ The symmetry function is linear with z and scales ∝ τ .



Fluctuation theorem
(15o − 25oN, 150o − 160oE), res 0.5o (sub-trop. gyre, Pacific)

1993–2017, res 6h

p(z) S(z)/τ
▶ Pdf non Gaussian
▶ With increasing averaging time negative events for the

power-input to the ocean occure less often.
▶ The symmetry function is linear with z and scales ∝ τ .



Fluctuation theorem
(35o − 45oN, 35o − 45oW ), res 0.5o (Gulf Stream extension)

1993–2017, res 6h

p(z) S(z)/τ
▶ Pdf non Gaussian
▶ With increasing averaging time negative events for the

power-input to the ocean occure less often.
▶ The symmetry function is not linear with z.



Fluctuation theorem
(30o − 40oN, 150o − 160oE), res 0.5o (Kuroshio extension)

1993–2017, res 6h

p(z) S(z)/τ
▶ Pdf non Gaussian
▶ With increasing averaging time negative events for the

power-input to the ocean occure less often.
▶ The symmetry function is not linear with z.



Fluctuation theorem

The symmetry function of the pdfs:

SZ
τ (z) = ln

(
pZ

τ (z)
pZ

τ (−z)

)
= στz,

no mean focing mean focing
(Wirth & Chapron 2021, NPG, paper of the month)



Conclusions
* The ocean subject to atmospheric forcing obeys a

fluctuation dissipation relation.

* Local models (linear and quadratic) can be solved
analytically (also with coloured noise).

* Some of the results from local models can be transposed
to fully 2D turbulence models.

* FDT, FT, Jarzynski equality and Crooks relation are
explored.



Perspectives
▶ Dissipation of non-resolved dynamics is included in models

(atmosphere, ocean climate, ...) but not the fluctuations.
However, fluctuation-dissipation-relations hold at all levels
of the dynamics.

▶ Consider truely non equilibrium processes (beyond:
spin-up, spin-down)

▶ Glassy states → Look at co-organization between ocean
and atmosphere dynamics

▶ Use modern tools of nonequilibrium stat. mech. in climate
science

▶ Applies whenever two systems with different characteristic
scales interact

Data, Data, Data
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