

What controls mesoscale eddies and eddy fluxes in the Arctic Ocean?

GIANLUCA MENEGHELLO

TO EACH WATER MASS THEIR OWN EDDY SYSTEM

Independent, very different mesoscale eddies develop in each water mass.

Observations of mesoscale eddies in the Canadian Arctic

Peaks in stratification limit vertical extent of mesoscale eddies

100 200 300 $N^{2} [1/s^{2}]$ ×10⁻ 15 15 APr Mar 2017-Apr

STRATIFICATION

OBSERVATIONS OF MESOSCALE EDDIES IN THE CANADIAN ARCTIC

Sea ice controls the level of kinetic energy at the surface

A 15 YEAR CLIMATOLOGY OF EDDY KINETIC ENERGY

Can baroclinic instability explain the vertical structure of the Arctic's eddy field?

STRATIFICATION CURRENT SPEED

Quasi-geostrophic balance $\frac{d\rho}{dt} = -\mathbf{u} \cdot \nabla \bar{\rho} \pm w_{Ek} \frac{\partial \bar{\rho}}{\partial z}$ Density conservation
(boundary) $\frac{dq}{dt} = -\mathbf{u} \cdot \nabla Q$ PV conservation
(interior)

Ekman pumping w_{Ek} has a stabilizing effect on baroclinic instability.

Can baroclinic instability explain the vertical structure of the Arctic's eddy field?

Ekman pumping w_{Ek} has a stabilizing effect on baroclinic instability.

Independent surface- and subsurface-intensified instabilities are identified

A very close match with observations

Only surface perturbations are affected by friction

Peaks in stratification extend all across the Arctic

Interior PV gradients enable the development of subsurface-intensified turbulence.

High-resolution models support theoretical results

High-resolution models support theoretical results

THE ORIGIN OF MESOSCALE EDDIES — THE SIMPLEST MODEL

Quasi-geostrophic b	alance	
$\frac{dq}{dt} = -\mathbf{u} \cdot \nabla Q$	PV conservation (interior)	
$\nabla Q = f_0 \frac{\nabla h}{H} = f_0 \frac{d\mathbf{S}}{dz}$	Background PV gradient	

Vertical variations of isopycnal slope control subsurface eddies.

UNSTABLE MODES

Changes in the Pacific waters' PV gradient only affect the subsurface mode

UNSTABLE MODES

Changes in the Pacific waters' PV gradient only affect the subsurface mode

UNSTABLE MODES

Changes in the Pacific waters' PV gradient only affect the subsurface mode

EIGENVECTORS

SIMULATION — EDDY KINETIC ENERGY

EDDY FLUXES

Constant isopycnal slope

Varying isopycnal slope

CONCLUSIONS

- To each water mass, their own eddy system
- Surface eddies are controlled by the presence of sea ice
- Subsurface eddies are controlled by internal PV gradients ... and cannot exist without them!
- Independent PV fluxes are generated within each water mass

