# Uncertainties in climate economic models – a machine learning approach

Presentation for GDR Workshop "Interfaces dans le système climatique" Yushan LIU

Supervised by Emmanuel Gobet and Gauthier Vermandel CMAP Ecole Polytechnque and Chair Stress test BNP Paribas



# **Scopes and Agenda**

# Context

- Global scale modeling and yearly time scale
- Simple Climate Models (SCMs)
- Optimal control problem



# Content

- DICE (Dynamic Integrated Climate Eonomic) Model by William Nordhaus
- Update in DICE 2024: From Energy Balance Model to FAIR model
- Bayesian FAIR model
- Conclusion and perspectives

# **DICE (Dynamic Integrated Climate Eonomic) Model**

- 3 boxes for carbon Masses **M**(t)
- 2 layers for temperature **T**(t)

$$\mathbf{M} = \begin{bmatrix} M^{\mathrm{AT}} \\ M^{\mathrm{UO}} \\ M^{\mathrm{LO}} \end{bmatrix}, \mathbf{T} = \begin{bmatrix} T^{\mathrm{AT}} \\ T^{\mathrm{OC}} \end{bmatrix}$$

#### **Continuous-time DICE formulation**

$$\max_{C(t),\mu(t)} \int_{t=t_0}^{\infty} \frac{U(t)}{(1+\rho)^t} dt, \quad \text{where} \quad U(t) = L(t) \left( \frac{\left(\frac{C(t)}{L(t)}\right)^{1-\alpha} - 1}{1-\alpha} \right)$$

subject to

...

$$\frac{\partial \mathbf{M}(t)}{\partial t} = \mathbf{B}\mathbf{M}(t) + \mathbf{B}_E\left(\underbrace{\Gamma(t)(1-\mu(t))Y^{net}(t)}_{\text{Industrial emission}} + E^{LAND}(t)\right),\tag{1}$$

$$\frac{\partial \mathbf{T}(t)}{\partial t} = \mathbf{C}_{\mathbb{T}} \mathbf{T}(t) + \left( F_{2x} \frac{\log\left(\frac{M_{\text{EQ}}^{AT}}{M_{\text{EQ}}}\right)}{\log(2)} + F^{EX}(t) \right),$$
(2)

$$\frac{\partial K(t)}{\partial t} = \log(1 - \delta_K)K(t) + \underbrace{\left(1 - \Lambda_t \mu(t)^{\alpha_{abate}} - \psi_2 \left(T^{\text{AT}}(t)\right)^2\right) Y^{net}(t) - C(t)}_{\text{Investment}} \tag{3}$$

(4)



# **DICE (Dynamic Integrated Climate Eonomic) Model**



...

(4)

Dietz, S., van der Ploeg, F., Rezai, A., & Venmans, F. (2021). Are economists getting climate dynamics right and does it matter?. *Journal of the Association of Environmental and Resource Economists*, *8*(5), 895-921.

### **Are Economists Getting Climate Dynamics Right?**



Dietz, Simon & Ploeg, Frederick & Rezai, Armon & Venmans, Frank. (2020). Are Economists Getting Climate Dynamics Right and Does it Matter?. SSRN Electronic Journal. 10.2139/ssrn.3545718.

# **Update in DICE 2024: From Energy Balance Model to FAIR model**



Leach, Nicholas & Jenkins, Stuart & Nicholls, Zebedee & Smith, Chris & Lynch, John & Cain, Michelle & Walsh, Tristram & Wu, Bill & Tsutsui, Junichi & Allen, Myles. (2021). FaIRv2.0.0: A generalized impulse response model for climate uncertainty and future scenario exploration. Geoscientific Model Development. 14. 3007-3036. 10.5194/gmd-14-3007-2021.

# **Bayesian FAIR model: Using Gaussian processes**

$$\begin{bmatrix} \mathsf{f}(t_1) \\ \mathsf{f}(t_2) \end{bmatrix} \sim \mathcal{N}\left( \begin{bmatrix} m(t_1) \\ m(t_2) \end{bmatrix}, \begin{bmatrix} k(t_1, t_1) & k(t_1, t_2) \\ k(t_2, t_1) & k(t_2, t_2) \end{bmatrix} \right).$$



Bouabid S, Sejdinovic D, Watson-Parris D. FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation[J]. arXiv preprint arXiv:2307.10052, 2023.

# Summary

- Epistemic uncertainty in climate models used for climate-economic models need to be quantified
- Bayesian approach is already implemented for FAIR model uncertainty quantification but only partially



# Thank you for your attention! Questions?

# And Does it Matter?



- How to study parameter uncertainties of the climate model?
- Simulations vs Stochastic Optimal control?

# Appendix



Figure 13: Emulated global mean surface temperature anomaly over 2015-2100 for the *SSP245* scenario with emulators trained over historical temperatures only.



Figure 12: Example of sample paths from the FaIRGP posterior for the emulation of *SSP126* (top-left), *SSP245* (top-right), *SSP370* (bottom-left) and *SSP585* (bottom-right) global mean surface temperature anomaly over the 2015-2100 period.