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Computer design experiments aka Surrogate modeling
aka Hyperparameter tuning aka....



Example from a normal day of a machine

Hyperparameters

n_layers =3
Q n_neurons = 512
learning_rate = 0.1

n_layers =3
Q n_neurons = 1024
learning_rate = 0.01

n_layers =5
n_neurons = 256
learning rate = 0.1

Model Tuning

The problem from a data scientist PoV

learner some years ago
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number of hidden layers

Not the case anymore (if you have
the necessary computing power)

accuracy

Learning rate

Training results

Kriging aka Gaussian Process
Regression



Model Tuning

The problem from a climate scientist PoV
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Model Tuning

The problem from a climate scientist PoV

'The Art and Science of Climate Model Tuning 3
1

Frédéric Hourdin &4 ; Thorsten Mauritsen; Andrew Gettelman; Jean-Christophe Golaz; Venkatramani Balaji;
Qingyun Duan; Doris Folini; Duoying Ji; Daniel Klocke; Yun Qian
Florian Rauser; Catherine Rio; Lorenzo Tomassini; Masahiro Watanabe; Daniel Williamson

Bull. Amer. Meteor. Soc. (2017) 98 (3): 589-602.
https://doi.org/10.1175/BAMS-D-15-00135.1  Article history &

It is important that modelin Journal of Advances in
P . : J : jAMES Modeling Earth Systems’
groups communicate their tuning
Str(]tegy Research Article (& OpenAccess @ ® G @
When comparing models given a The Tuning Strategy of IPSL-CM6A-LR
metriC, |t iS Very |mport0 nt to knOW Juliette Mignot B4, Frédéric Hourdin, Julie Deshayes, Olivier Boucher, Guillaume Gastineau, lonela Musat
H Martin Vancoppenolle, Jérome Servonnat, Arnaud Caubel, Frédérique Chéruy, Sébastien Denvil
WhICh mOdeIS were tuned for thqt Jean-Louis Dufresne, Christian Ethé, Laurent Fairhead, Marie-Alice Foujols, Jean-Yves Grandpeix
metric Guillaume Levavasseur, Olivier Marti, Matthew Menary, Catherine Rio, Clément Rousset, Yona Silvy

... See fewer authors ~




Model Tuning

Context of my work

MOPGA project: HRMES

Using machine learning to help
tuning climate models

Modeling groups tune by hand models to make them match Julie Deshayes
observations (CNRS, LOCEAN-IPSL)

Very expensive, for example it took 5 years to find an
acceptable tuning of IPSL model

Qur goal :
Use ML-based emulators to replace the expensive climate model

find one or many good tunings

V. Balaji

. . b . , (Schmidt Sciences,
run the expensive model with these “good" tunings IPSL)
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Part Il

History Matching



History Matching
A little bit of History

Originated from the oil reservoir
modeling

In the recent literature for climate
model tuning, History Matching
seems to gain more popularity
(partly thanks to the ANR
HighTune), but other techniques
are being investigated too such
as CES (Calibrate Emulate
Sample) by Cleary et all.

HM goes beyond finding a unique
reference version of a model and
allows us to explore the possible
model worlds compatible with a
set of observational constraints

CHAPTER

Bayes Linear Strategies for Matching
Hydrocarbon Reservoir History

P S Craig, M Goldstein, A H Seheult, J A Smith

https://doi.org/10.1093/050/9780198523567.003.0004  Pages 69-96
Published: May 1996

214, Vi
DOL: 301

Gal
Matching for the Observable Universe

lan Vernon, Michael Goldstein and Richard Bower

Research articles

Bayesian emulation and history matching
of JUNE

I. Vernon &=, J. Owen, J. Aylett-Bullock, C. Cuesta-Lazaro, J. Frawley, A. Quera-Bofarull,
A. Sedgewick, D. Shi, H. Truong, M. Turner, J. Walker, T. Caulfield, K. Fong and F. Krauss

Published:15 August 2022 https://doi.org/10.1098/rsta.2022.0039



Model Tuning
Challenges

Ideally we would individually check every possible
parameter setting for the input:

Impossible (climate models are expensive to run)

g Tug

Need for replacing the expensive
simulator with a rapid and cheap
emulator

Need for space-filling designs to
cover the space of parameter search

Ex: using Latin :
Hypercube Sampling Surrogate modeling




Space filling design
ex: LHS

Old and well established
technique discovered many times
in the past by independent
groups

Called N-Rooks in the computer
graphics community

In practice we use the “maximin”
version of LHS: values are added
to the design one by one such
that the maximin criteria is
satisfied
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25 points of a Latin hypercube sample in [0, 1]x[0, 1]



Surrogate Modeling

ex: Gaussian Processes
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Surrogate Modeling

ex: Gaussian Processes
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Surrogate Modeling

ex: Gaussian Processes
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Gaussian Process Regression

y = f(x) +e,

where x € R?, y € R,ande ~ N(O, 0,22) is i.i.d. Gaussian measurement noise. We place a

GP prior on the unknown function f, such that the generative process is

p(f) = GP(m, k)
p(y|f,x) = N(y|f(x),02),

where p( f) is the GP prior and p(y| f, x) is the likelihood. Moreover, m and k are the mean

and covariance functions of the GP, respectively.

For training inputs X = [xl, R sl x.\r] and corresponding (noisy) training targets

Yy = [y1,--.,Yxn] we obtain the predictive distribution

p(fX,y,x.) = N(f.|p,07)
p. = m(x,) + k(x,, X)(k(X,X) + ¢2I) }(y — m(X))
o? = k(x,,x,) — k(x,,X)(k(X,X) + o2I) 'k(X, x,)

*

at a test point x,.




History Matching
The Algorithm

Initial guess of
parameter space

Spoce—ﬁ"lng
design

Ex: using Latin
Hypercube
Sampling

‘ History Matching (iterative refocussing)

Calculate Ny Training an Calculate
metrics Emulator lmplousnbulﬂy

Ex: usin
Build a dataset Gaussua?\
(inputs, metrics) Process

Regression

A
\«.1. I( )

~

IE[£(6)) - z|
VVarl7(0)]

Rule out if >3
(Pukelsheim’s 3-sigma
rule)

Set of plausible
parameters

Done in waves!
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HM on simple & intermediate complexity models



Simple model: Lorenz96 model
Experimental design

d
iodi = X he
Periodic system of K (k=1,...,K) ODEs ddtk _ \_Xk—l (. — Xk+1) _X, R Z
Two-level version: add periodic Advection Diffasion Foran orcing =
variable Y with its own set of ODEs. Coupling
d}/] ko he

The X and Y ODEs are linked through dt - ebY;+1,k (ij?”“ —Yi1k) "k b X
coupling terms. Each X has] Y Advection L iin L e

variables associated with it.

Analogy with coupled ocean-atmosphere models:

Fast dynamics

OCeaIl Slow dynamics

Experiment: HM for the tuning of parameters (F, h, c, b)




% Simple model: Lorenz96 model

*

Experimental design

Metrics: long-term time means to
mimic climatological quantities

Ground Truth: perfect setting
K=36 X variables each coupled
with J=10 Y variable. F=10, h=1,
c=10, b=10, chaotic behavior.

HM code: Python code run on
Jean-Zay cluster + Parallel
computation + ML models can be
trained on GPU

[ 2 )
Y
X, v)=\| x?
XY
¥
Justitied by energy

conservation constraints,
check Schneider et al. 2017
for details (ESM 2.0 paper)



Application to the Lorenz?6 model

Experimental design

Initial guess of parameter space

Params Prior True
F [-20,20] 10
h [-2,2] 1
C [0,20] 10
b [-20,20] 10

Train the emulator then use it for
inference on a large number of
samples

Calculate 1(g) = |E[£(0)] — 2|

Implausibility Var[f(6)]

40 samples
from a LHS

—

Here, one GP

Per output
—

Space filling design

Run the L96 model

Build a training database
for the emulator:
x_train.size=(40,4)
y_train.size=(40,180)



Application to the Lorenz?6 model

Not Ruled Out Yet space (NROY space)

Minimum implausibility

o |\ (

v

3

Remaining space:0.031316

0.5

0.4

0.3

0.2

0.1

0.0

ypdop reondo



Application to the Lorenz?6 model

Lessons learned

On an ideadlized experiment, HM combined with
dimensionality reduction techniques (ex: PCA)
applied to the two-scale L96 succeeded in
narrowing the NROY on the ground truth values

Incorporating as much physical expertise as
possible (for example in the priors) helps
reaching satisfying results in fewer waves than
with a blind approach

Raising questions about the “default” choices
used by practitioners. Example: After the first
wave, how to perform a space filling sampling
of a discontinuous space? and how to select
representative points from the final NROY ?

dXp
dt = —Xp_1 (Xp—2 — Xp41) _Xk +F —_Zyjk
Advection Diff uuuuu Forr‘lng
Coupling
dY; he
d]’k = =cbYjr1k (Yjpok — Yim1k) =Y +— X
t 2 b

Advection

Remaining space:0.16956

MOTS

1Sv4



Paper and Code
Loguensat et al. 2023

Journal of Advances in
jAMES Modeling Earth Systems”

Research Article & Open Access @ @ @

Semi-Automatic Tuning of Coupled Climate Models With
Multiple Intrinsic Timescales: Lessons Learned From the
Lorenz96 Model

Redouane Lguensat B4, Julie Deshayes, Homer Durand, Venkatramani Balaji

First published: 04 May 2023 | https://doi.org/10.1029/2022MS003367

https://github.com/HRMES-MOPGA /1 96HistoryMatching



https://github.com/HRMES-MOPGA/L96HistoryMatching

Intermediate complexity model: iLoveClim
Experimental design

ILOVECLIM model

e I(LOVECLIM is a climate model of intermediate CLIO ECBilt
complexity, derived from the LOVECLIM model E

from Goose et al. (2010). |
Carbon ==

e 9 tunable parameters, affecting the atmosphere,
ode & 560 x 5.6°

the ocean and land surfaces

e Oceanic metrics are crucial to tune not only the
oceanic parameters but can help improve tuning
of land and atmospheric parameters as well. 3°x 3°

e The temporality of the metrics is important, as
computing 5-year-means is the best when
considering atmospheric metrics alone, while
computing 20-year-means seems optimal when
considering atmospheric and oceanic metrics

VECODE



Paper and Code
Janvier et al. 2023

Poster
in
Workshop: NeurlPS 2023 Workshop on Tackling Climate Change with Machine Learning; Blending New and Existing Knowledge Systems

Surrogate modeling based History Matching for an Earth system model of intermediate
complexity

Maya Janvier - Redouane Lguensat - Julie Deshayes - Aurelien Quiquet - Didier Roche - V. Balaji

https://github.com/mayajanvier/iLOVECLIM HistoryMatching

Extended paper
in prep..


https://github.com/mayajanvier/iLOVECLIM_HistoryMatching

Part IV

HM on real climate models



History Matching at IPSL & CNRM
Atmospheric Model

e HM was used to tune atmospheric models, ex:

Journal of Advances in
jAMES Modeling Earth Systems”

Research Article @ OpenAccess @ ® G @

LMDZ (Hourdin et al. 2020/ Couvreux et al. 2020) Process-Based Climate Model Development Harnessing
PY USing Single‘CO|Umn models (SCMS) they afford to Machine Learning: I. A Calibration Tool for Parameterization

run several simulations with different set of

parameters

e Short timescales, generating training datasets

is fast

Improvement

Fleur Couvreux %4 Frédéric Hourdin, Daniel Williamson, Romain Roehrig, Victoria Volodina

Najda Villefranque, Catherine Rio, Olivier Audouin, James Salter, Eric Bazile, Florent Brient, Florence Favot,
Rachel Honnert, Marie-Pierre Lefebvre, Jean-Baptiste Madeleine, Quentin Rodier, Wenzhe Xu

... See fewer authors ~

J | of Ad i
JAMES | Wodciing Earth Systems:

E—

e Revisiting the “hand tuning” of IPSL-CM6A-LR Research arcle | & openaceess | © ® © ©

configuration

Process-Based Climate Model Development Harnessing
Machine Learning: Il. Model Calibration From Single Column to

e HM indicates ARPEGE-Climat 6.3 turbulence Global
pO rq meterizqtion defiCienCieS due to poor Frédéric Hourdin %4, Daniel Williamson, Catherine Rio, Fleur Couvreux, Romain Roehrig,

calibration

.'AMES Journal of Advances in
Modeling Earth Systems’
Research Article 3 OpenAccess @ ® @ &

Modeling the GABLS4 Strongly-Stable Boundary Layer With a
GCM Turbulence Parameterization: Parametric Sensitivity or
Intrinsic Limits?

0. Audouin %, R. Roehrig, F. Couvreux, D. Williamson

Najda Villefranque, lonela Musat, Laurent Fairhead, F. Binta Diallo, Victoria Volodina

25 | Citations: 14

SCIENCE ADVANCES | RESEARCH ARTICLE

ATMOSPHERIC SCIENCE

Toward machine-assisted tuning avoiding the
underestimation of uncertainty in climate change
projections

Frédéric Hourdin'*, Brady Ferster?, Julie Deshayes?, Juliette Mignot?, lonela Musat’,
Daniel Williamson®



History Matching at IPSL

Oceanic Model

HM was used to tune ocean models, e oonch o dor e O8O0

doi:10.5194/gmd-10-1789-2017

ex: NEMO ORCA 2° (Wi”i(]msson et al. ©Augor(s)2017.CCAnribution3.0License.
2017) CaCa

Usi ng an ava ilable ensemble of 400 Tuning without over-tuning: parametric uncertainty quantification

NEMO simulations ran for 150 years for the NEMO ocean model
Daniel B. Williamson!, Adam T. Blaker?, and Bablu Sinha?
H H 1 !College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
Ve ry | o n g t I m e S CO | eS I n Oceo n IC 2National Oceanography Centre, Southampton, SO14 3ZH, UK
m O d e I S W h i C h m G ke S tu n i n g Correspondence to: Daniel B. Williamson (d.williamson @exeter.ac.uk)
i Received: 20 July 2016 — Discussion started: 30 August 2016
C O m p I I C G t e d Revised: 24 November 2016 — Accepted: 30 January 2017 — Published: 27 April 2017

Accelerating spin-up ? Emulating NEMO ?



History Matching at IPSL
Land Surface Model

There is a trade-off to be found
computationally speaking: waves in
HM vs population in GA

HM is a gradient-free technique which

is seen as an advantage, as the
adjoint of ORCHIDEE is expensive to
maintain

HM overfit less than DA

3.0
772.5
b
x 120
2 E
e QO
§ 215
® W
2z
3 Z10 }
@ |
s
Z 05 é +
#6020
0.0 A
X
o K S S
& 5§ €85 S
&S &g &L
£ o ¥

Latent Heat flux

RMSD LE (W.m™2)

Exploring the Potential of History Matching for Land Surface

Model Calibration

Nina Raoult', Simon Beylat?>?, James M. Salter!, Frédéric Hourdin*, Vladislav Bastrikov®,

Catherine Ottlé?, and Philippe Peylin?

!Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Laver

Building, North Park Road. Exeter, EX4 4QE, UK

2Laboratoire des Sciences du Climat et de I'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay,

Gif-sur-Yvette, 91191, France

3School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Victoria, Australia
*Laboratoire de Météorologie Dynamique, LMD/IPSL, Sorbonne Université, CNRS, Ecole Polytechnique, ENS, Paris,

75005, France
3Science Partners, Paris, France

Correspondence: Nina Raoult (n.m.raoult2 @exeter.ac.uk)
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History Matching at IPSL & CNRM

Coupled models

| used DALLE3 to generate this image



Future work

PEPR TRACCS

/\ PROGRAMME
NCE DE RECHERCHE

O v

§ uwsa UCA RD sowers
e o St B CERFACS

PC-6

Calibration &

uncertainties

Julie Deshayes (IPSL-LOCEAN)
Aurore Voldoire (CNRM;)
Romain Roehrig CNRM)

Towards HM-tuned IPSL/CNRM models for CMIP7 !




Tune in this Friday !
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sur l'utilisation des projections climatiques. |
Julie Deshayes (CNRS)

- Vendredi 31/05/2024 de 11h a 12h




| used Stable Diffusion to generate the image

| wish | had an emulator...

Redouane Lguensat
rliguensat@ipsl.fr

Website: redouanelg.qithub.io Twitter: @redouanelg
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