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Objectives of this talk

- lllustrate why we explore augmenting models with ML
(13 - lllustrate how this Is done In practice today
- Advocate that a deep recast of our models is needed
- Discuss some steps towards Al-native hybrid models
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New toys In the oceanographer’s toolbox




Computational oceanographer’s toolbox

Observations Physical models Inverse methods
(in situ/satellite) (ocean circulation models) (data assimilation)

Observations '

Observation erro rs

_ p(Y|w,X)p(w)
p(w(X,Y) = p(Y[X)

" Improved
Model Results

Tools for understanding but also monitoring and forecasting ocean circulation



How Al is affecting our numerical systems
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XiHe: A Data-Driven Model for Global Ocean
Eddy-Resolving Forecasting

Xiang Wang, Renzhi Wang, Ningzi Hu, Pingiang Wang, Peng Huo, Guihua Wang, Huizan Wang,
Senzhang Wang, Junxing Zhu, Jianbo Xu, Jun Yin, Senliang Bao, Cigiang Luo, Ziging Zu, Yi Han, Weimin
Zhang, Kaijun Ren, Kefeng Deng, Jungiang Song

Abstract—Global ocean forecasting is fundamentally important to support marine activities. The leading operational Global Ocean
Forecasting Systems (GOFSs) use physics-driven numerical forecasting models that solve the partial differential equations with
expensive computation. Recently, specifically in atmosphere weather forecasting, data-driven models have demonstrated significant
potential for speeding up environmental forecasting by orders of magnitude, but there is still no data-driven GOFS that matches the
forecasting accuracy of the numerical GOFSs. In this paper, we propose the first data-driven 1/12° resolution global ocean
eddy-resolving forecasting model named XiHe, which is established from the 25-year France Mercator Ocean International’s daily
GLORYS12 reanalysis data. XiHe is a hierarchical transformer-based framework coupled with two special designs. One is the
land-ocean mask mechanism for focusing exclusively on the global ocean circulation. The other is the ocean-specific block for
effectively capturing both local ocean information and global teleconnection. Extensive experiments are conducted under satellite
observations, in situ observations, and the IV-TT Class 4 evaluation framework of the world’s leading operational GOFSs from January
2019 to December 2020. The results demonstrate that XiHe achieves stronger forecast performance in all testing variables than
existing leading operational numerical GOFSs including Mercator Ocean Physical SYstem (PSY4), Global Ice Ocean Prediction
System (GIOPS), BLUEIinK OceanMAPS (BLK), and Forecast Ocean Assimilation Model (FOAM). Particularly, the accuracy of ocean
current forecasting of XiHe out to 60 days is even better than that of PSY4 in just 10 days. Additionally, XiHe is able to forecast the
large-scale circulation and the mesoscale eddies. Furthermore, it can make a 10-day forecast in only 0.36 seconds, which accelerates
the forecast speed by thousands of times compared to the traditional numerical GOFSs.

Index Terms—Global Ocean Forecasting, Deep Learning, Eddy Resolving, Data-Driven, Al for Science

1 INTRODUCTION

Ocean forecasting is critically important for many ma-
rine activities. At present, the leading GOFSs (e.g. Mercator
Ocean Physical SYstem (PSY4) and Real-Time Ocean Fore-
cast System (RTOFS)) use physics-driven models in fluid
mechanics and thermodynamics to predict future ocean
motion states and phenomena based on current ocean con-
ditions [1]. The GOFSs adopt numerical methods that rely
on supercomputers to solve the partial differential equa-
tions of the physical models. Due to their desirable per-
formance, they are operationally run in different countries
worldwide. However, numerical forecasting methods are
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e Renzhi Wang, Senzhang Wang and Jun Yin are with the School of
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410083, China.
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China University of Petroleum (East China), Qingdao 266580, China.

e Peng Huo is with the College of Artificial Intelligence, Tianjin University
of Science and Technology, Tianjin 300457, China.

e Guihua Wang is with the Department of Atmospheric and Oceanic
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e Ziging Zu, Key Laboratory of Marine Hazards Forecasting, National Ma-
rine Environmental Forecasting Center, Ministry of Natural Resources,
Beijing 100081, China.
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usually computationally expensive and slow. For example,
a single forecasting simulation in the numerical GOFSs may
take hours on a supercomputer with hundreds of computa-
tional nodes [2]. Besides, improving the forecasting accuracy
of these methods is exceedingly challenging because they
heavily rely on the human cognitive abilities in understand-
ing the physical laws of the ocean environment [3].

With the recent advances of Artificial Intelligence (Al)
techniques, deep learning methods have been widely ap-
plied in various prediction/forecasting tasks of different
fields and achieved great success. Particularly, some data-
driven Al models have shown the potential in atmosphere
weather forecasting like Pangu-Weather [4] and Graph-
Cast [5]. They have achieved comparable or even better
prediction results in global medium-range weather fore-
casting than current leading numerical weather prediction
(NWP) methods [E], E[l, ﬂﬁ, [ﬂ, , IEﬂ One significant
advantage of data-driven models is that they can make
the forecasting thousands or even tens of thousands of
times faster than NWP methods @] Furthermore, they can
automatically learn the spatial-temporal relationships from
massive meteorological data, and effectively capture the
rules of weather changing, without introducing the prior
knowledge of physics mechanisms.

Although data-driven models have achieved promising
results in atmosphere weather forecasting, how to build a
more accurate and efficient data-driven ocean forecasting
model remains an open research issue due to the following

https://arxiv.org/abs/2402.02995
Wang et al. (2024)

Al-based ocean forecasting

Patch Partition

token

embedddings

hd

senEniiianniaRRRRERRNES
Input variables
GLORYSI12 dataset: Temperatuere, Salinity,
uo, vo with 23 layers, SSH

ERAS dataset: U10,V10 OSTIA dataset: SST

20 40 60 80

-60 -40 -20 O

180

-150

=
X
<
X
AR

Ocean-Specific Transformer

Patch Restoration

h 4

Z %00|g 21108dg-ueadQ

ocean-land mask

]
= =
dlI-==.7.-r!_.==

-

P — | _----h-.“.-é.|=I
SSEEEEEEEEEEEEEEEEEEEEEEN

€ yo0|g oy0adg-ueas)

¥ %00|g ou0adg-uead)

f
4

= ‘
X N
< .

= —
X -
AR)

Temperature,Salinity,uo,vo
- With 23 layers

SSH

-120

-90

Trained from ocean reanalyses

ov—

09-

SLA

0.065 1

0.060 1

—e— XiHe
—u— PSY4
B LK

-+ GIOPS
FOAM

// //

0.055

T T T T T T T T T

1 2 3 4 5 6 7 8 9
Lead Time(days)

Short term forecast skill

//
10°°20""30"" 60




arxXiv:2311.07222v3 [physics.ao-ph| & Mar 2024

N\ )

Learned ;t
encoder L

v Yvy

Gynamical core\ (Learned physics\

3t

Neural General Circulation Models for Weather

and Climate
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Abstract

General circulation models (GCMs) are the foundation of weather and climate
prediction. GCMs are physics-based simulators which combine a numerical solver

for large-scale dynamics with tuned representations for small-scale processes such

as cloud formation. Recently, machine learning (ML) models trained on reanaly-

sis data achieved comparable or better skill than GCMs for deterministic weather Dyn a m i c l hySi CS

forecasting. However, these models have not demonstrated improved ensemble
forecasts, or shown sufficient stability for long-term weather and climate sim-

ulations. Here we present the first GCM that combines a differentiable solver tendenCies tendenCieS

for atmospheric dynamics with ML components, and show that it can generate

forecasts of deterministic weather, ensemble weather and climate on par with
the best ML and physics-based methods. NeuralGCM is competitive with ML

models for 1-10 day forecasts, and with the European Centre for Medium-Range
Weather Forecasts ensemble prediction for 1-15 day forecasts. With prescribed
sea surface temperature, NeuralGCM can accurately track climate metrics such ODE SOIver

as global mean temperature for multiple decades, and climate forecasts with 140

Learned

Outputs decoder :

https://arxiv.org/abs/2311.07222

'IA"“"“ https://qithub.com/google-research/dinosaur
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Kochkov et al. (2024) (’(‘('("Q‘é https://github.com/google-research/neuralgcm
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Augmenting ocean models with ML components

Input with

step n l 0 . parameters

trained to minimise :

+
9 parameters Z(0) = training objective
step n+1 .
l - correcting model errors (vs obs.)
- replacing some components (x10-100)
Output - improving physical consistency

The model is augmented with a trainable component

- NB : does not have to be deterministic



ML for ocean models subgrid physics (1/2)
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ML for ocean models subgrid physics (2/2)

Dynamical system Resolved equations
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Learning model error from DA increments (1/3)
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Learning model error from DA increments (2/3)

p° Online
Farchi et al. (2021a,b) — —
./
Initialisation p DA step X ML step . Machine AT
> . > . > (p*, x%) Learning Methods
fix p min. over Xg min. over p
T J ) J Thuerey et al. (2021)
Yk Computational
Physics 1
Model state Forecast error, 2 d-integration Sci-ML
20 HG
2 _O . . . . .
‘ - renewed Iinterest in biais corrections
| for DA systems over recent years
-6

NN prediction, 2 d-integration

. joint DA-ML frameworks for estimating
A model errors (in idealised settings)
- L " iterative online training of NN with DA
0 10 20 30 40i (Farchi et al. 20214a,b; 2023;

Brajard et al. 2021; Frezat et al. 2022)

Online estimation of model errors w/ a joint DA-ML 4DVAR (weak)



Learning model error from DA increments (3/3
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RESEARCH ARTICLE
10.1029/2022MS003309

Key Points:

A neural network (NN) trained to
infer analysis increments from model
forecasts learns to correct systematic
errors in the FV3-GFS model
Sensitivity analysis of the NN
reveals physically consistent error
characteristics that may be used to
improve the NN architecture
Applying online corrections from NN
improves the accuracy of sequential
data assimilation and extended free
forecasts

Correspondence to:
T.-C. Chen,

Ocean/sea-ice reanalyse
be used for estimating model errors

will

Correcting Systematic and State-Dependent Errors in the
NOAA FV3-GFS Using Neural Networks

Tse-Chun Chen'? (), Stephen G. Penny'?, Jeffrey S. Whitaker? (), Sergey Frolov?,
Robert Pincus* (, and Stefan Tulich'?

!Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA,
?National Oceanic and Atmospheric Administration (NOAA), Physical Sciences Laboratory (PSL), Boulder, CO, USA, Sofar
Ocean Technologies, San Francisco, CA, USA, “Lamont Doherty Earth Observatory, Columbia University, New York, N,
USA

Abstract Weather forecasts made with imperfect models contain state-dependent errors. Data

(DA) partially corrects these errors with new information from observations. As such, the corrections, or
“analysis increments,” produced by the DA process embed information about model errors. An attempt is
made here to extract that information to improve numerical weather prediction. Neural networks (NNs) are
trained to predict corrections to the systematic error in the National Oceanic and Atmospheric Administration's
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Special Section:
Machine learning application to
Earth system modeling

Key Points:

o We show that sea ice data

Deep Learning of Systematic Sea Ice Model Errors From Data
Assimilation Increments
William Gregory! (', Mitchell Bushuk? (', Alistair Adcroft' ", Yongfei Zhang', and Laure Zanna®

| Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA, *Geophysical Fluid Dynamics
Laboratory, NOAA, Princeton, NJ, USA, *Courant Institute of Mathematical Sciences, New York University, New York, NY,
USA

increments closely reflect the
systematic bias patterns of a global
ice-ocean model

Convolutional neural networks can

‘make skillful predictions of sea ice
data assimilation increments, using
only model state variables

The skillful predictions suggest
the network could be used as a
parameterization to reduce

FPR————

Abstract Data assimilation is often viewed as a framework for correcting short-term error growth in
dynamical climate model forecasts. When viewed on the time scales of climate however, these short-term
corrections, or analysis increments, can closely mirror the systematic bias patterns of the dynamical model.
In this study, we use convolutional neural networks (CNN) to learn a mapping from model state variables to
analysis i in order to sh the feasibility of a data-driven model parameterization which can
predict state-dependent model errors. We undertake this p using an i ean data il system

Increments

Offline

© 2022 The Authors. Journal of
Advances in Modeling Earth Systems
published by Wiley Periodicals LLC on
behalf of American Geophysical Union.
This is an open access article under

the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

FN correction is then fed back into the weather model to improve the quality of the best guess state of the
here and the subseq 10-day fi By analyzing how the NN output depends on its input forecast,
we gain some insight about the model errors, which may be helpful for future ic model devel

and improvements to future error-correcting NNs.

1. Introduction

Operational numerical weather prediction (NWP) models are inherently imperfect. Systematic errors result from
approximations in deriving the governing equations, from their numerical implementation, and from conceptual
and numerical errors in the parameterizations that represent subgrid scale physical and dynamical processes.
Even small errors in any component of the NWP model can compound over time to produce errors that signifi-
cantly degrade the forecasting skill.

Systematic errors can be addressed with a wide range of approaches. One approach is to improve the model
components—the dynamical core and subgrid scale physics parameterizations. The forecast system as a whole
can be improved, say by adopting stochastic parameterizations that account for uncertainty, or by increasing
spatial resolution. Model forecasts can also be further improved by an “offline” post-processing using statistical
methods (e.g., Model Output Statistics) or machine learning (ML) methods applied to the model output after the
completion of model forecast. However, the model errors may be convoluted over time and become more nonlin-
ear as forecast progresses, leading to errors that are more difficult to represent.
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P P
produce our “best guess” of the climate system. The difference between our best-guess-model and our original
climate model prediction then gives us clues as to how wrong our original climate model is. In this work we use
some fancy statistics, called machine learning, where we show a computer algorithm lots of examples of sea
ice, atmosphere and ocean climate model predictions, and see if it can learn its own inherent sea ice errors. We
find that it can do this well, which means that we can hopefully incorporate the machine learning algorithm into
the original climate model to improve its future climate predictions.

1. Introduction

The influence of structural errors within climate models due to missing physics, imperfect parameterizations of
subgrid-scale processes, as well as errors in the underlying numerics, leads to systematic biases across the atmos-
phere, land, sea ice, and ocean. Subsequently, our ability to diagnose and correct these biases ultimately governs
the accuracy of numerical weather and climate predictions on different time scales (Stevens & Bony, 2013). In the
context of sea ice for example, much effort has been afforded to the improvement of model physics and subgrid
parameterizations through the development of for example, ice thickness distribution (Bitz et al., 2001; Thorndike
etal., 1975) and floe-size distribution theory (Horvat & Tziperman, 2015; Rothrock & Thorndike, 1984), surface
melt-pond (Flocco et al., 2012), ice drift (Tsamados et al., 2013) and lateral melt parameterizations (M. Smith
etal.,, 2022), as well as sea ice rheology (Dansereau et al., 2016; Hibler, 1979; Olason et al., 2022). Such studies
have shown how the improved representation of sea ice physics produces model simulations which more closely
reflect observations in terms of either their mean sea ice volume, drift, or ice thickness distribution. Despite this,

GREGORY ET AL.
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Interfacing ocean models with DL frameworks (1/3)

“

supercomputers runs only on CPUs

FICIC

stable, robust, low abstraction languages

O PyTorch («3‘:3‘3‘
w0 @ @

cloud ready natively runs on GPUs

high abstraction, fast evolving languages



Interfacing ocean models with DL frameworks (2/3)

Ocean circulation models
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Interfacing ocean models with DL frameworks (3/3
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ML for ocean macro-turbulence
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Training from realistic ocean models
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dataset describing a distribution of some physical quantities V, V5, V3, . . . in space on a discrete mesh [z, y):
Vi = Valzi i)

The objective is to predict an unknown quantity @ and it is assumed that it is linked to the known quantities
through some functional mapping f:

Qlzi i) = f(Viles, yi], Vales, wi], Vales, il )

The ML methods can be used to learni this functional mapping. In order to formulate this problem for
supervised learning, one needs training and validation dataset, where the input fields V3, V5, Vs, . .. are
combined with the 'ground truth' for the quantity @ that needs to be predicted.

Particularity of the workflow consists in adapting this ML method to geospatial data, that has some particular
issues such as non-uniform grids, presence of masked points and usage of xArray datasets.

Prediction of subgrid-scale temperature variance

One group of quantities that can predicted with such a workflow are subgrid-scale variances and fluxes.
Subgrid-scale (SGS) temperature variance is defined as:

ok = (T?) — (T)?

where the triangle brackets denote operator of coarsening from a higher to a lower resolution. In other words,
the sibgrid temperature variance is a difference between square of temperature computed bedore applyting
coarsening in its square after applying the coarsening operator.

T ——————

GeoTrainFlow training pipeline

(Stanley et al. 2020)
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The need for Al-native hybrid models




Avoid having to bridge the technological gap
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stable, robust, low abstraction languages
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Training ML components for physical models

offline learning online learning
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mapping - X = H(x) 0,Y + GY) + My (y) =f

at fixed time t along a trajectory

(@.k.a : a posteriori, solver-in-the-loop, end-to-enq)

Frezat et al. 2022, JAMES How does online training affects : performance, stability, generalisation



ML closure for ocean macro-turbulence (1/3)

0.0+ J(y,w) = vVew — pw — foy + F

() = Vzllj U = (—8y1//, axl//)
vorticity velocity

Filtering @ := |w(X)G(X —Xx')dx’

Filtered eq. 0,® + J(y, @) = rhs + R(y, )

SGS term Rly,w)=V - -(uow—uaw)

See e.g. Graham and Ringler (2013) Closure pbm R(y, ) =~ %{Q\IN(JJ, @)



ML closure for ocean macro-turbulence (2/3)

Loss for a priori training

1 S
gprio(%) = E Z (R(l//a a))i o %(l/_jv a_)i))2
=1

x(t + N Af)

Loss for a posteriori training

1 N
Z pos M) = — D (T (@(iAD) — @(iAD)?
=1



Frezat et al. 2022 JAMES
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- baselines : over-diffusive
- offline learning : unstable
- online : stable and accurate

See also List et al. (2022, 2024)
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ML closure for ocean macro- turbulence (3/3)
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The need for differentiable numerical solvers

target prediction

. / 0.F M P
arg min £ (z, A (y | 0)) — (z, M(y | 0)) = W(y | Q)M
0

gradient of the loss

For time evolving problems, with

y(t + At) — Em O +e+ O El(Y(t)) M = E temporal evolution operator

The gradient of the loss involves tricky without Automatic Differenciation (AD) ' |

a% - aE B a(Emo ce OEl) B aE aEz aEl

- = =M O m L But AD not available

00 - 00 R 00 R aEm—l aEl 00 IN ocean models...
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Leveraging differentiable programming

f(x;;0) Piu(®),v)  Py(,,v) P, (1, ,,v) @

oL

See eg Thuerey et al. 2021
https://arxiv.org/abs/2109.05237

. specific
Supervised or

residual loss L languages

0 o190 0P\/0y;  oP,/ou, oP,/ou,, ouj(t + At)
s 4
ALY 66
Y AVAS
aNY W W
- programs composed of differentiable building blocks ° .0.
- building blocks : trainable and procedural code components JUIIa

- trainable end-to-end with gradient based optimisation

a generalisation of Differentiable numerical
deep learning simulations of physical systems


https://arxiv.org/abs/2109.05237
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Al-native hybrid geoscientific models

Neural General Circulation Models for Weather
and Climate

Dmitrii Kochkov'™, Janni Yuval’'", Tan Langmore!T,
Peter Norgaard'f, Jamie Smith'f, Griffin Mooers!,
Milan Kléwer?, James Lottes', Stephan Rasp', Peter Diiben®,
Sam Hatfield®, Peter Battaglia?, Alvaro Sanchez-Gonzalez?,
Matthew Willson?, Michael P. Brenner'®, Stephan Hoyer!"!

lGoogle Research, Mountain View, CA.
2Google DeepMind, London, UK.
3European Centre for Medium-Range Weather Forecasts, Reading, UK.
‘Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of
Technology.
5School of Engineering and Applied Sciences, Harvard University.

*Corresponding author(s). E-mail(s): dkochkov@google.com;
janniyuval@google.com; shoyer@google.com;
TThese authors contributed equally to this work.

Abstract

General circulation models (GCMs) are the foundation of weather and climate
prediction. GCMs are physics-based simulators which combine a numerical solver
for large-scale dynamics with tuned representations for small-scale processes such
as cloud formation. Recently, machine learning (ML) models trained on reanaly-
sis data achieved comparable or better skill than GCMs for deterministic weather
forecasting. However, these models have not demonstrated improved ensemble
forecasts, or shown sufficient stability for long-term weather and climate sim-
ulations. Here we present the first GCM that combines a differentiable solver
for atmospheric dynamics with ML components, and show that it can generate
forecasts of deterministic weather, ensemble weather and climate on par with
the best ML and physics-based methods. NeuralGCM is competitive with ML
models for 1-10 day forecasts, and with the European Centre for Medium-Range
Weather Forecasts ensemble prediction for 1-15 day forecasts. With prescribed
sea surface temperature, NeuralGCM can accurately track climate metrics such
as global mean temperature for multiple decades, and climate forecasts with 140

https://arxiv.org/abs/2311.07222

Kochkov et al. (2024)
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Al-native hybrid geoscientific models

Earth System Observation Data

Allowing to optimise
Ground truth for the validation of a2 =t e ¢ 5 Available data pool for neural
process-based models et "y network training environments - mOdel param ete rS

o g % iy~ UMmerical scnemes

Machine Learning

Main tool for quantifying the Earth's / £ . Highly specialized agents that B Su bg rl d C‘OSU reS

state under ongoing anthropogenic . . uncover hidden patterns and
forcing ' : geophysical quantities _
Contains persistent error sources . : Lack of process knowledge

Process-based models and
neural networks will be coupled
as actively learning hybrid models

L et i ...and better exploit

power of traditional models '
observations and
hiI-res simulations

Successive research on explainable Al will make
hybrid models more physically interpretable

Combining the advantages of process-based
Irrgang et al. (2021) with machine learning models

Neural Earth System Modelling Differentiable programming
In earth system models
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The choice of the programming language

@ veros.readthedocs.iofen/latest/

Veros 1.5.1+51.g4039f76.dirty documentation 0 =

Versatile Ocean Simulation in Pure
Python

Veros, the versatile ocean simulator, aims to be the swiss army knife of ocean modeling. It is a full-
fledged primitive equation ocean model that supports anything between idealized toy models and
realistic, high-resolution, global ocean simulations. And because Veros is written in pure Python, the
days of struggling with complicated model setup workflows, ancient programming environments, and
obscure legacy code are finally over.

In a nutshell, we want to enable high-performance ocean modelling with a clear focus on flexibility
and usability.

Veros supports a NumPy backend for small-scale problems, and a high-performance JAX backend
with CPU and GPU support. It is fully parallelized via MPI and supports distributed execution on any
number of nodes, including multi-GPU architectures (see also our benchmarks).

The dynamical core of Veros is based on pyOM2, an ocean model with a Fortran backend and Fortran
and Python frontends.

If you want to learn more about the background and capabilities of Veros, you should check out A
short introduction to Veros. If you are already convinced, you can jump right into action, and learn
how to get started instead!

e .
- because the ":,}gawaw/ 8 aue.

© Seealso

We outline some of our design philosophy and current direction in this blog post.

START HERE
e A short introduction to Veros
o The vision
o Features
e (Getting started
o |nstallation
o Setting up a model
o Running Veros
o Enhancing Veros
e Advanced installation

ANANA
\ 0 Usinﬁ JAX /

Examples
of (almost) Al-native
ocean models

but not fully
Al-ready yet

@ clima.github.io/OceananigansDocumentati

O =z -

Oceananigans.jl
# . Fast and friendly fluid dynamics on CPUs and GPUs.

Oceananigans is a fast, friendly, flexible software package for finite volume simulations of the nonhydrostatic and
hydrostatic Boussinesq equations on CPUs and GPUs. It runs on GPUs (wow, fast!), though we believe
Oceananigans makes the biggest waves with its ultra-flexible user interface that makes simple simulations easy,
and complex, creative simulations possible.

Oceananigans is written in Julia by the Climate Modeling Alliance and heroic external collaborators.

Quick install

Oceananigans is a registered Julia package. So to install it,

1. Download Julia.

2. Launch Julia and type

julia> using Pkg

julia> Pkg.add("Oceananigans")

© Julia 1.9 is required

Oceananigans requires Julia 1.2 or later.

If you're new to Julia and its wonderful Pkg manager, the Oceananigans wiki provides more detailed installation

Ia

instructions.

The Oceananigans "knowledge base"

It's deep and includes:

e This documentation, which provides

o example Oceananigans scripts,
o tutorials that describe key Oceananigans objects and functions,
o explanations of Oceananigans finite-volume-based numerical methods,

o details of the dynamical equations solved by Oceananigans models, and

Our Graal : Al-ready, differentiable, fast, high-level abstraction, long-lasting.




Revisiting our systems’ APIs

»@® Copernicus
——— Marine Service

Chemistry . Ecosystems

Earth System models Operational prediction systems
(IPCC) (Copernicus)

Systems build over decades, based on low level abstraction
No clearly defined APIs for ocean models.



The need for cross-disciplinary efforts

Use cases

Computer

Physics :
science




Accelerating progress with open benchmarks (1/2

https://github.com/google-research/weatherbench?2

@ github.com/google-research/weatherbench2

= O google-research /| weatherbench2 Q Type (/] to search

<> Code (©) Issues 3 i1 Pullrequests 1 (® Actions @) Security |~ Insights

arXiv paper
Google Al Blog post

Why WeatherBench? ¢

WeatherBench 2 is a framework for evaluating and comparing data-driven and traditional numerical weather
forecasting models. WeatherBench consists of:

¢ Publicly available, cloud-optimized ground truth and baseline datasets. For a complete list, see this page.

* Open-source evaluation code. See this quick-start to explore the basic functionality or the API docs for

® Python 100.0%

2020-09-30T00 2020-10-017T00 2020-10-027T00

20 30

2020-10-03T00

Keisler et al. (2022

2021] Yuval et al.; 2

Rasp and Thuerey [2/

First, we model a sig
variables defined on

https://doi.o

WeatherBench 2

- 3D, more variables
- more metrics
- probabillistic forecasts

ClimaX (Microsoft

¢

0

Figure 1: ClimaX is built ¢
front, these tasks include st
globally or regionally. On t
from lower resolution modg¢

*Equal contributions as last

Author email(s): tungnd@cs.ucl
jkg@cs.stanfo

https.//doi.c

methods are often slow; a single simulation for aten
take hours of computation in a supercomputer tha
nodes’. Inaddition, conventional NWP algorithms la
meterization, whichusesapproximate functionsto ci
processes, where errors canbe introduced by appr¢

The rapid development of deep learning'® has in{
ising direction, which the scientific community ref
intelligence (Al)-based methods*" . Here, the m
train a deep neural network to capture the relation
input (reanalysis weather dataatagiven pointintim
(reanalysis weather data at the target point in time
computational devices such as graphics processi
Al-based methods are extremely fast. To give arece
CastNet” takes only 7 s to compute a 100-member, |
whichisorders of magnitudes faster than conventior
However, the accuracy of FourCastNet is still beloy
rootmeansquare error (RMSE) of a5-day Z500 (500/
forecast is 484.5, which is much worse than the 333,
operationalintegrated forecasting system (IFS) of th¢

"Huawei Cloud, Shenzhen, China. ®e-mail: tian.gil@huawei.com

https.//doi.org/10

arXiv:2212.12794v2 [cs.LG] 4 Aug 2023

(5 weatherbench2 ruiic ®Watch 6 ~ % Fork 10~ ¢ Star 147  ~
I
n
e G tte roate” Gkl " PanguWeather Huawel
A benchmark for the next generation of
@ ilopezgp and Weatherbench2 authors [weatherbench2] Fix longitude/la... v 2186401 2daysago ‘O 163 commits data-driven global weather models.
B github Add vertical velocity as a derived variable. 5 days ago & weatherbench2.readthedocs.io i l
N Article C .
M docs [weatherbench2] Add script to compute global statistical moments. 3 weeks ago (0 Readme (@ A foundat G ra h a St G O O I e D e e M I n d
58 Apache-2.0 license K A t
M scripts [weatherbench?2] Fix longitude/latitude in regrid script. 2 days ago N T ccura e me‘
@ Code of conduct e ung .
I weatherbench2 Fixes for derived variable calculations. 3 days ago A- Activity L%: We present forecastlng “
D .gitignore Small fixes in documentation. Added regridding script 2 months ago ¥ 147 stars wv neuraLnel.w
) — state by six
5 watch - y
[ .readthedocs.yaml Update with arXiv link and remove python.system_packages from ... 2 months ago © 5 watching forecaslslgc Most state-of-the-art ap)
s 1
¥ 10 forks = metmios sl S0 muaerical models of £y https://doi.org/101038/s41586-023-06185-3  Kail
¥ LICENSE Internal change 4 months ago ) o, . (o] and complex interactio .
Report repository 1 previous dal (a») Additi 1l Received: 5 January 2023
) ) hysical m( ¢ itionally, many su¢ —
[ README.md Minor formatting update; 2 months ago 8 ls)cales and) modeling the atmosph Accepted: 9 May 2023 We
; ing ' -dri - Published online: 5 July 2023 fon . i i i -
[ conftest.py Internal change 4 months ago Releases 1 8 connecting ,2 3:;?:;::: fi::;:t;i ublished onfine: 5 Uty atd Gl‘aphCaSt. Leamlng Sklllfu]. mEdlum l‘ange
P~ Open access :
. R 7 o eat lobal weather forecastin
Y pyproject.toml Removing isort lint check. 2 months ago © v0.1.0 (Tatest) = 1 Introduction —— d(fep neural networks. # Checkfor updates ied g g
Aug 31 . ~ climate datasets for sp
. . . on
(3 setup.py Remove wb2_ prefix for scripts; add version number 0.1.0 2 months ago ¢ o Numerical weather pi G models. We develop 3 s:‘ Remi Lam"!, Alvaro Sanchez-Gonzalez"!, Matthew Willson"-!, Peter Wirnsberger™-!, Meire Fortunato!,
hd . : the * ] 1 me Ewaldel o 1 Waih 1 A1 a
and positive impact model for weather anc Ferran Alet ", Suman Ravuri ", Timo » Zach Eat , Hu', A Merose?,
B — observational data, | »J. spanning different vari intl Stephan Hoyer?, George Holland', Oriol Vinyals, Jacklynn Stott!, Alexander Pritzel', Shakir Mohamed' and
= README.md Packages > mcreasmgly accurate 175} extends the Transfornd wei ?erer Battaglial
g While statistical tech Q effective use of availahl Ear equal contribution, ! Google DeepMind, *Google Research
N ki blished - i
0 packages publishe w these models contim with a self-supervised | an¢
More recently, spurt ~ €1) . . inn
S interest in statistical > trained ClimaX can th P Global medium-range weather forecasting is critical to decision-making across many social and economic
’ X . . ar
O ) . to improve uponana  C7) including those that inf allt domains. Traditional numerical weather prediction uses increased compute resources to improve forecast
Contributors 7 8 forecasts, faster fore( § pretraining. Compared int accuracy, but cannot directly use historical weather data to improve the underlying model. We introduce
e a e r e n c O 5~ = ‘e ifgrsggzlgll‘ to advg () results in superior perfe For a machine learning-based method called “GraphCast”, which can be trained directly from reanalysis
O ’ !! O @ /M - q\! T i even when pretrained ¢ end data. It predicts hundreds of weather variables, over 10 days at 0.25° resolution globally, in under one
> There 1s currentlyav https://github.com/mic oa minute. We show that GraphCast significantly outperforms the most accurate operational deterministic
'>'2 gl;)eza ls “lllcrlx:lde‘:‘aflaﬁg(;’ % ‘ systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction,
Deployments 3 é_& 2021, Maulik etal.2 €~ including tropical cyclones, atmospheric rivers, and extreme temperatures. GraphCast is a key advance

in accurate and efficient weather forecasting, and helps realize the promise of machine learning for

> Weather forecasting is animportantapplication of sci . :
@ github-pages 3 months ago [2‘(\),1 9. r%[sgeh()h:ll 3‘12-‘ >v2 Projections that aims to predict future weather changes, espec modeling complex dynamical systems.
: att-Meyer et al., : extreme weather events. In the past decade, high-perf
WeatherBench 2 - A benchmark for the next generation + 2 deployments 2020, Rasp and Thue "+ g oysteams have greatlyaccelerated researchineil
. high-level proposals < weather prediction (NWP) methods'. Conventional | Keywords: Weather forecasting, ECMWEF, ERAS, HRES, learning simulation, graph neural networks
Of data-drlven gIObaI Weather mOdels @ in the context of higl primarily concerned with describing the transition
In this work we preg a0 tized grids of atmospheric states using partial diffe .
Languages approach is simil;a: { e | (PDEs) and then solving them with numerical simt Introduction

It is 05:45 UTC in mid-October, 2022, in Bologna, Italy, and the European Centre for Medium-Range
Weather Forecasts (ECMWF)’s new High-Performance Computing Facility has just started operation.
For the past several hours the Integrated Forecasting System (IFS) has been running sophisticated
calculations to forecast Earth’s weather over the next days and weeks, and its first predictions have
just begun to be disseminated to users. This process repeats every six hours, every day, to supply the
world with the most accurate weather forecasts available.

The IFS, and modern weather forecasting more generally, are triumphs of science and engineering.
The dynamics of weather systems are among the most complex physical phenomena on Earth, and
each day, countless decisions made by individuals, industries, and policymakers depend on accurate
weather forecasts, from deciding whether to wear a jacket or to flee a dangerous storm. The dominant
approach for weather forecasting today is “numerical weather prediction” (NWP), which involves
solving the governing equations of weather using supercomputers. The success of NWP lies in the
rigorous and ongoing research practices that provide increasingly detailed descriptions of weather
phenomena, and how well NWP scales to greater accuracy with greater computational resources [3, 2].
As a result, the accuracy of weather forecasts have increased year after year, to the point where the
surface temperature, or the path of a hurricane, can be predicted many days ahead—a possibility
that was unthinkable even a few decades ago.

But while traditional NWP scales well with compute, its accuracy does not improve with increasing
amounts of historical data. There are vast archives of weather and climatological data, e.g. ECMWF’s
MARS [17], but until recently there have been few practical means for using such data to directly
improve the quality of forecast models. Rather, NWP methods are improved by highly trained experts
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Accelerating progress with open benchmarks (2/2

@ github.com/ocean-data-challenges

o Search or jump to. Pull requests Issues Marketplace Explore

Ocean Data Challenges

&Y Hosting collaborative data challenge related to ocean sci

@ Overview [J Repositories a4 [ Projects @ Packages A Teams 1 R People 9 @ Settings

&3 2020a_SSH_mapping_NATL60 ' Public £ 2021a_SSH_mapping_OSE ' Public

i

2022a_SWOT_kai

Achallenge on the §

rror_filtering  public

nental error filtering organised by Datlas, IMT Altlantique and CLS.

@ Jupyter Notebook £ ¢

¥o O1 110 Updated 1l daysago

2022b_SSH_QG_mapping

Altimetric map; uasi

@ Jupyter N

2021a_SSH_mapping_OSE  pudiic
A challenge on the mapping of real satellite altimeter sea surface height data organised by MEOM@IGE,
Ocean-Next and CLS.

@ Jupyter N
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- problem description + baseline
- data, metrics (with codes
- tools for collaboration and papers

@ github.com/ocean-data-challenges/2022a_SWOT_kari

DO 10.5281/28n0do.4045400

SSH Mapping Data Challenge 2020a

This repository contains codes and sample notebooks for downloading and processing the SSH mapping data
challenge.

The quickstart can be run online by clicking here: (IEERIEREE]

Motivation

The goal is to how to best of Sea Surface Height (SSH) maps from partial
satellite altimetry observations. This data challenge follows an Observation System Simulation Experiment
framework: "Real” full SSH are from a numerical simulation with a realistic, high-resolution ocean circulation
model: the reference simulation. Satellite observations are simulated by sampling the reference simulation
based on realistic orbits of past, existing or future altimetry satellites. A baseline reconstruction method is
provided (see below) and the practical goal of the challenge is to beat this baseline according to scores also
described below and in Jupyter notebooks.

Reference simulation

The reference simulation is the NATL60 simulation based on the NEMO model (Ajayi et al. 2020
d0i:10.1029/2019JC015827). The simulation is run without tidal forcing.

Observations

The SSH observations include simulations of Topex-Poseidon, Jason 1, Geosat Follow-On, Envisat, and SWOT
altimeter data. This nadir altimeters constellation was operating during the 2003-2005 period and is still
considered as a historical optimal constellation in terms of spatio-temporal coverage. The data challenge
simulates the addition of SWOT to this reference No observation error is in this
challenge.

Data sequence and use

B8 @ github.com/ocean-data-challenges/2020a_SSH_ A challenge on the SWOT Karin
ata-challenges / 2022b_SSH_QG_mapping ' Public <X EditPins v = ©uUnwatch 4 ~ Y Fork 0~ ¢ Star 0~ Jarotta Maxime correction wrong latitude variable in psd computation bench, 611ebes 11daysago O 98 commits instrumental error filtering organised
by Datlas, IMT Altiantique and CLS,
s cleaning 22 days ago
P 1ssues 11 Pullrequests ® Actions [ Projects [0 Wiki @ Security |2 Insights @ Settings M Readme
Q Search or jump to. Pull requests Issues Marketplace Explore res Adding obs figure to readme 2 months ago B MIT license
. hain ~  §* 1branch © 0 tags Gotofile  Addfile~ m About ] ts cleaning 22daysago | W Ostars
8 ocean-data-challenges / 2020a_SSH_mapping_NATLE0 ' Puiic <R EditPins v | OUnwatch 10 v | ¥ Fork 7~ 77 ster 19~ ® 4 watching
Altimetric mapping on quasi- book exe compare 19 days ago .
Y Oforks
SammyMetref Improving README 1364c08 27 days ago ) 44 commits eostrophy model Data Challenge ¢
<> Code (O Issues 1 11 Pullrequests (@ Actions [3 Projects [0 Wiki @ Security |~ Insights @3 Settings J S oo O o phy o s add psd_median.nc 21 days ago
0 Readme
data Adding gitignore and data repo 27 days ago dme correction wrong latitude variable in psd computation benchmark. 11 days ago
o About ® & M Releases
A challenge on the mapping of satellite notebooks Imps 27 days ® NSE Initial commit 2 months ago
@ mballaro Update README.md 388510 on 12 Aug 105 commits altimeter sea surface height data
organised by MEOM@IGE, Ocean-Next results Adding gitignor 27 days ago ¥ Oforks DME.md update Readme 22 days ago
figures Add figure for Wiki AVISO+ account creation 2yearsago | and CLS. Packages
src first commit 29 days ago ronment.yml Switch from Basemap to Cartopy last month
) notebooks Update eval_advarnet_v2022.ipynb 2 months ago benchmark  machine-learning
LICENSE first commit 29 days ago Releases Kstart.ipynb exe quickstart 22 days ago
dataset  oceanography  satellite-data
) results create result repo 2 years ago ]
README.md Improving README 27 days Lirements.txt Update requ txt 2 months ago
1 src Update mod_regrid.py 2 months ago 0 Readme i
e il g environmentymi first commit 29 days Contributors 2
BB MIT license
O .gitignore Create gitignore 2 years ago DME.md V4
£ 19 stars quickstart.ipynb first co 29 days ago @ mvatiaro vaime saaroa
O LICENSE add LICENSE 2 years ago © 10 watehing
h i i i 0 SammyMetref Sammy Metref
D resomems 2montrsoso | ¥ 7foms ReAoME m ’ OT karin error filtering 2022a
D environmentymi Update environment.ym! 2 years ago 3 . . ) llenge on the SWOT Karin instrumental error filtering organised by Datlas, IMT Altiantique and CLS.
- Languages
D auickstartipynb Update notebooks with negative ongitude as n ef dataset 2yesrsago  Releases 1 Atimetric mapping on a quasi-geostrophy model guag Languages
——— — .
© Material for SSH mapping d... (Latest) challenge on mapping pseudo altimetric data on a QG model created by Datlas and MEOM-IGE  Jupyter Notebook 81.1% SL © Jupyter Notebook 99.4:
= README.md 2 923 Sep 2020  Python 1.9 o Python 05

o Data Challenges

Contributors &

046889

Languages

is repository contains codes and sample for and the SSH QG mapping ographic applications which will make them an unprecedented L3 product to be distributed. The row
ta challenge. I data will however be by and errors (Gauthier et al., 2016; Peral

© Jupyter Notebook 100 steban-Fernandez, 2018). In order to be able to observe front, mesoscale and sub-mesoscale features,
. COntext and ITIOtIVatIOn IOT data will require specific processing. Also, these errors are expected to strongly pollute the first
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wo-dimensional sea level SWOT products are very much expected to be a game changer in many

lecond derivatives of the SSH data which are used for the computation of geostrophic currents and
ity. Hence, being able to remove the SWOT errors will be of significant importance to recover

fter several altimetric mapping challenges have been proposed to the oceanographic community (see
png N propf ap v hation on 20 surface currents and vertical mixing.

Eknowledgment), the goal of this simplified altimetric mapping data challenge is to open a new entry point
r people from other communities to play and bring their outside knowlegde to this oceanographic problem. WOT errors are expected to generate noises that are both correlated on the swath and spatially

eneral goal

e goal is to how to best of sea surface height (SSH) maps from partial
tellite altimetric observations. The end goal is to have efficient methods that are able to extrapolate
jormation from the partial (in time and space) satellite data in order to generate fully resolved maps of the
ean surface at all time. In this OSSE experimental context -- i.e. where we know the underlying "true" fields

model data / obs data

see : https://qgithub.com/ocean-data-challenges/

Leaderboard

Method  u(RMSE) o(RMSE) . At
(degree) (days)

baseline 0.69 0.03 3.31 33.32

Ol 1 nadir ’ ’ ’ ’

baseline

Ol 4 0.83 0.04 2.25 15.67

nadirs

baseline

Ol 1 swot 0.85 0.05 1.22 12.38

duacs 4

. 0.92 0.01 1.42 12.0
nadirs

bfn 4

. 0.92 0.02 1.23 10.6
nadirs

dymost 4

. 0.91 0.01 1.36 11.79
nadirs

miost 4

B 0.93 0.01 1.35 10.19
nadirs

4DVarNet
4 nadirs 0.94 0.01 118 10.34

¥

duacs 1
swot + 4 0.92 0.02 1.22 11.15
nadirs

bfn 1
swot + 4 0.93 0.02 0.8 10.09
nadirs

dymost 1
swot + 4 0.93 0.02 1.2 10.07
nadirs

miost 1
swot + 4 0.94 0.01 1.18 10
nadirs

4DVarNet
1 swot +
4 nadirs

v

u(RMSE): average RMSE score.

o(RMSE): standard deviation of the RMSE score.
AX: minimum spatial scale resolved.

At: minimum time scale resolved.

0.95 0.01 0.82 6.

Le Guillou et al. 2021
Febvre et al. 2021
Beauchamp et al. 2022
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https://github.com/ocean-data-challenges/

Summary

- lllustrated why we are augmenting models with ML

- Described how this Is done In practice today
- Advocated that a deep recast of our models is needed
- Discussed some steps towards Al-native hybrid models

- Including the need for large cross-disciplinary efforts

R
3




A cross-disciplinary event later today
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GAP 2024 Grenoble Artificial Intelligence for Physical Sciences Workshop
Scientific seminars from 29 to 30 May 2024 at MaCi, Grenoble, France
Julia tutorial on 31 May 2024 at IMAG building, Grenoble, France

https://gap2024.sciencesconf.org Starting today at 1:30PM


https://gap2024.sciencesconf.org

