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- Illustrate why we explore augmenting models with ML


- Illustrate how this is done in practice today


- Advocate that a deep recast of our models is needed


- Discuss some steps towards AI-native hybrid models 
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Objectives of this talk

Observations Models / AI



New toys in the oceanographer’s toolbox 
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Computational oceanographer’s toolbox

Inverse methods 
(data assimilation)

Observations 
(in situ/satellite)

Physical models 
(ocean circulation models) 

Tools for understanding but also monitoring and forecasting ocean circulation



Observations Physics-based 
forecast

Data  
assimilation 

Post-processing, 
dissemination 

denoising, inpainting 
parameter retrieval 

quality control

data fusion,  
tailored services 

data mining
AI, machine learning & 

data-driven approaches

Upstream Downstream

Core of our numerical 
systems

How AI is affecting our numerical systems 



  AI-based ocean forecasting  

GLORYS 

Trained from ocean reanalyses Short term forecast skill Wang et al. (2024)

https://arxiv.org/abs/2402.02995



AI-native hybrid geoscientific models   

Kochkov et al. (2024)

https://arxiv.org/abs/2311.07222 https://github.com/google-research/dinosaur 
https://github.com/google-research/neuralgcm 

https://github.com/google-research/dinosaur
https://github.com/google-research/neuralgcm


Hybrid models combining physics and ML 
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The model is augmented with a trainable component

+

Input

Output

θ : parameters

step n

step n+1

θ : parameters

trained to minimise : 

with

ℒ(θ) = training objectiveℳ : model

Augmenting ocean models with ML components

- correcting model errors (vs obs.) 

- replacing some components (x10-100) 

- improving physical consistency 

- NB : does not have to be deterministic



- missing terms from resolved quantities 
- closures for turbulent processes

- leveraging hi-res/process model data  
- encoded as closed forms or ML models  
-  a very active field (5-10 papers / months) 

Partee et al. (2022)

ocean  
macro-turbulence

See for instance :  
M2LInES consortium  

https://m2lines.github.io

ML for ocean models subgrid physics (1/2)

https://m2lines.github.io


∂t x + ℒ x + 𝒩( x) = 0
Dynamical system

∂t y + G(y) + = 0

∂t x̃ + ℒ x̃ + 𝒩( x̃) = 𝒩( x̃) − 𝒩̃(x)

Resolved equations
x̃

∂t x + G(x) = 0

?

ℳ( x̃) ≃ 𝒩( x̃) − 𝒩̃(x)

Subgrid closure

Learning the mapping

x̃(t) → ℳ( x̃(t))ℳNN(y)

Frezat et al. (2021)  
Physical consistency  

Symmetries, invariances

loss function / architecture 

Frezat et al. (2022)  
End-to-end training

Differentiable programming, 

different loss function 

w/ same architecture  

Frezat et al. (2023)  
Gradient-free training

training model emulator

for approx. gradient 

wrt NN. parameters 


 

θ : parameters

Performance, stability 
Generalisation, interpretability

ML for ocean models subgrid physics (2/2)



- estimating state-dependent bias corrections 
(Leith, 1978; Saha, 1992; DelSole and Hou, 1999) 

- state-dependent biais corrections provide a 
representation of model errors 

Palmer & Weisheimer (2011)

unbiased model
Model Biais Avg. Increment

Gregory et al. (2023)

biased model - w/ unbiased observations, analysis increments 
compensate for model biais

Learning model error from DA increments (1/3)



Computational  
Physics

Numerical  
Methods

Machine  
Learning

Thuerey et al. (2021)

Sci-ML

- renewed interest in biais corrections 
for DA systems over recent years 

(Farchi et al. 2021a,b; 2023; 
Brajard et al. 2021; Frezat et al. 2022)

Farchi et al. (2021a,b)

Online estimation of model errors w/ a joint DA-ML 4DVAR (weak)

- joint DA-ML frameworks for estimating 
model errors (in idealised settings)

- iterative online training of NN with DA

Online

Learning model error from DA increments (2/3)



- NN for learning state-dependant biais 
corrections from analysis increments

Offline

( Bonavita and Laloyaux, 2020; Watt-Meyer et al., 
2021; Chen et al., 2022; Gregory et al. 2023; 
Chapman and Berner 2023) 

https://doi.org/10.1029/2023MS003757 https://doi.org/10.1029/2022MS003309 

- w/ applications in GCMs (atmosphere 
and ocean/sea-ice)  

- showing success in improving the 
modeled climate state & forecast skill

State Errors

Ocean/sea-ice reanalyses (increments) 
will be used for estimating model errors 

Learning model error from DA increments (3/3)

https://doi.org/10.1029/2023MS003757


Hybrid modelling with existing codes
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stable, robust, low abstraction languages 

high abstraction, fast evolving languages

supercomputers runs only on CPUs 

+

cloud ready natively runs on GPUs

+

Interfacing ocean models with DL frameworks (1/3)



Input

Output

step n+1

step n

+

Interfacing ocean models with DL frameworks (2/3)

Ocean circulation models 
Trainable components  

(closures, error corrections) 



Interfacing ocean models with DL frameworks (3/3)

- OASIS : exchange of 3D data between different codes

- Eophis : simplified deployment of ML models w/ OASIS

- Requires some change to the NEMO code

- Key : portability, domain decomposition 

Work by Alexis Barge at IGE

https://github.com/meom-group/eophis 

A. Barge

https://github.com/meom-group/eophis


ML for ocean macro-turbulence 

NEMO-eORCA025 NEMO-eORCA1

Target NEMO configurations 

DINO : Diabatic Neverworld

resolutions ~ 1°, 1/4°, 1km

Light-weight test-bed 

D. Kamm 

E. Meunier  

J. Deshayes

https://doi.org/10.1029/2021MS002534Guillaumin and Zanna 2021 

On-going work : 

Subgrid momentum forcing  due to mesoscale eddies

Work by D. Kamm, E. Meunier, A. Barge

Zhang et al. 2023 https://doi.org/10.1029/2023MS003697

Collaboration through M2LINES project



Training from realistic ocean models 

Problem formulation

NEMO-eNATL60

σ2
T = ⟨T2⟩ − ⟨T⟩2

sub-mesoscale  
temperature variance 

2D/3D

w/ simple baseline (eq. state)

(Stanley et al. 2020)

GeoTrainFlow training pipeline 

• geometry, grid, coastlines 
• heterogeneous regimes 
• optimal coarse graining 
• data structure / orchestration  

A. Gorbunova



The need for AI-native hybrid models
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stable, robust, low abstraction languages 

high abstraction, fast evolving languages

supercomputers runs only on CPUs 

+

cloud ready natively runs on GPUs

+

Clean APIs and MLOPs

Less robust software design (APIs) 

Avoid having to bridge the technological gap 



offline learning   

x → 𝒩(x)mapping

at fixed time t 

ℒt + Δt

ℒt + 2Δt ℒt + NΔt

x(t)
y(t)

x(t + N Δt)

y(t + 2 Δt)
y(t + Δt)

x(t + Δt)

x(t + 2 Δt)

y(t + N Δt)

online learning   

∂t y + G(y) + = fℳNN(y)

along a trajectory  

How does online training affects : performance, stability, generalisation Frezat et al. 2022, JAMES

Training ML components for physical models 

(a.k.a : a posteriori, solver-in-the-loop, end-to-end)



∂tω + J(ψ, ω) = ν∇2ω − μω − β∂xψ + F

u = (−∂yψ, ∂xψ)ω = ∇2ψ

Graham and Ringler (2013)

vorticity velocity

See e.g. Graham and Ringler (2013)

ω := ∫ ω(x′￼)G(x − x′￼)dx′￼Filteringω
∂t ω̄ + J(ψ̄, ω̄) = rhs + R(ψ, ω)

SGS term R(ψ, ω) = ∇ ⋅ (ū ω̄ − u ω)

Filtered eq.

ω

R(ψ, ω) ≃ ℳNN
θ (ψ̄, ω̄)Closure pbm 

ML closure for ocean macro-turbulence  (1/3)



ℳNN
θ (ψ̄, ω̄)

ℒprio(ℳ) :=
1
S

S

∑
i=1

(R(ψ, ω)i − ℳ(ψ̄i, ω̄i))2

Loss for a priori training 

ℒpost(ℳ) :=
1
N

N

∑
i=1

(𝒯(ω(iΔt)) − ω̄(iΔt))2

Loss for a posteriori training 

ℒt + Δt

ℒt + 2Δt ℒt + NΔt

x(t)
y(t)

x(t + N Δt)

y(t + 2 Δt)
y(t + Δt)

x(t + Δt)

x(t + 2 Δt)

y(t + N Δt)
( ≃ R(ψ, ω))

ML closure for ocean macro-turbulence  (2/3)



- baselines : over-diffusive

- offline learning : unstable 

- online : stable and accurate 

Frezat et al. 2022 JAMES
ML closure for ocean macro-turbulence  (3/3)

See also List et al. (2022, 2024)



The need for differentiable numerical solvers

∂ℒ
∂θ

(z, ℳ(y | θ)) =
∂ℳ
∂θ

(y | θ)
∂ℒ
∂ℳ

gradient of the loss 

arg min
θ

ℒ(z, ℳ(y | θ))
target prediction

y(t + Δt) = Em ∘ ⋯ ∘ E1(y(t)) ℳ ≡ E

For time evolving problems, with

temporal evolution operator

∂ℳ
∂θ

≡
∂E
∂θ

=
∂(Em ∘ ⋯ ∘ E1)

∂θ
=

∂Em

∂Em−1
⋯

∂E2

∂E1

∂E1

∂θ

The gradient of the loss involves tricky without Automatic Differenciation (AD) ! 

But AD not available 

in ocean models…



Differentiable numerical 
simulations of physical systems 

- programs composed of differentiable building blocks

- building blocks : trainable and procedural code components 

- trainable end-to-end with gradient based optimisation 


a generalisation of 
deep learning 

specific  
languages

Leveraging differentiable programming

https://arxiv.org/abs/2109.05237
See eg Thuerey et al. 2021

https://arxiv.org/abs/2109.05237


AI-native hybrid geoscientific models   

Kochkov et al. (2024)

https://arxiv.org/abs/2311.07222 https://github.com/google-research/dinosaur 
https://github.com/google-research/neuralgcm 

https://github.com/google-research/neuralgcm
https://github.com/google-research/dinosaur


Irrgang et al. (2021)
Differentiable programming 


in earth system models

Allowing to optimise 
- model parameters  
- numerical schemes 
- subgrid closures 
- … 
 

…and better exploit  
observations and  
hi-res simulations

AI-native hybrid geoscientific models   



Path towards AI-native hybrid ocean models  
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The choice of the programming language 

Our Graal : AI-ready, differentiable, fast, high-level abstraction, long-lasting. 

Examples  
of (almost) AI-native  

ocean models 

but not fully  
AI-ready yet



Operational prediction systems 
(Copernicus)

Revisiting our systems’ APIs

Earth System models  
(IPCC)

Systems build over decades, based on low level abstraction

No clearly defined APIs for ocean models. 



The need for cross-disciplinary efforts 

Use cases 

Physics AI Applied maths 
Computer  
science 



Keisler et al. (2022)

https://doi.org/10.48550/arXiv.2202.07575 

ClimaX (Microsoft)

https://doi.org/10.48550/arXiv.2301.10343 

PanguWeather (Huawei)

https://doi.org/10.1038/s41586-023-06185-3

GraphCast (Google Deep Mind)

https://doi.org/10.48550/arXiv.2212.12794

https://github.com/pangeo-data/WeatherBench

data source : ERA5 reanalysis

https://github.com/google-research/weatherbench2

WeatherBench 2 
- 3D, more variables

- more metrics

- probabilistic forecasts 

Accelerating progress with open benchmarks (1/2)

https://doi.org/10.48550/arXiv.2202.07575
https://doi.org/10.48550/arXiv.2301.10343
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.48550/arXiv.2212.12794


Accelerating progress with open benchmarks (2/2)

see : https://github.com/ocean-data-challenges/ 

Collaborative  
data-challenges 

model data / obs data

- problem description + baseline 
- data, metrics (with codes) 
- tools for collaboration and papers  

Le Guillou et al. 2021 
Febvre et al. 2021 
Beauchamp et al. 2022

collab.

IGE, IMT-Atl, 

Datlas, CLS

interdisciplinary

supported by  
CNES, CMEMS

SSH mapping

https://github.com/ocean-data-challenges/


- Illustrated why we are augmenting models with ML


- Described how this is done in practice today


- Advocated that a deep recast of our models is needed


- Discussed some steps towards AI-native hybrid models 


- Including the need for large cross-disciplinary efforts
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Summary 

Observations Models / AI



https://gap2024.sciencesconf.org Starting today at 1:30PM

A cross-disciplinary event later today 

https://gap2024.sciencesconf.org

