Étude de saisons caniculaires extrêmes en Asie du Sud à l'aide d'un algorithme d'événement rares

Clément Le Priol^{1,2}, with Joy M. Monteiro^{3,4}, Freddy Bouchet²

Journées du GDR « Défis théoriques pour les Sciences du Climat », Grenoble, 27 mai 2024

- ¹ Laboratoire de Physique à l'ENS de Lyon, Lyon, France
- ² Laboratoire de Météorologie Dynamique, IPSL, ENS-PSL, CNRS, Paris, France
- ³ Department of Earth and Climate Science, IISER Pune, Pune, India
- ⁴ Department of Data Science, IISER Pune, Pune, India

Extremely rare events matter

2003 West European heatwave

July 20 - August 20 temperature anomaly

2021 Pacific Northwest heatwave

June 29, 2021 temperature compared with the 2014–2020 average for that day

NASA

Extremely rare events matter

An event that has a **return time** of **1000 years** has:

• 1/1000 chance to occur in any year

$$\operatorname{rt}(x) = 1/\mathbb{P}(X \ge x)$$

•6% chance to occur in the next 60 years.

(In a stationary climate)

Difficulties in studying extremely rare events

- Observational records (60-150 years): Too short for observing most events but useful for GEV/GPD fits
- Climate models: Obtaining good statistics on events that
 have a return time of centuries using direct simulations
 requires millennia of simulation -> extremely large
 computation cost with the best models
- How to sample extremely rare events in climate models?
 - —> Rare event algorithms

Rare event algorithm's principle

Duplicate the trajectories most likely to produce the desired event, **eliminate** the others (*resampling step*).

N=200 trajectories (constant)

Resample every 5 days

Total integration time: 90 days (3 months)

Application: extreme heatwave seasons in South Asia

- Heatwave season = pre-monsoon season (March to June)
- We want to sample extrema of April-May-June (AMJ) averaged temperature

Choice of the score function

- ullet We resample according to weights W_n assigned to each trajectory
- The computation of the weights relies on a **score function** $W\left(\left\{x(t)\right\}\right)$
- A good score function, tailored to the events of interest, is crucial to the effectiveness of the algorithm.

We want to sample extremes of $\tilde{A}\left(\{x(t)\}\right)=rac{1}{T}\int_{\mathrm{AMJ}}A(x(t))dt\,,\;T=90\,\mathrm{days}$

where
$$A(x(t)) = \frac{1}{\mathcal{A}} \int_{Area} T_{2m}(\mathbf{r}, t) d\mathbf{r}$$

Score function suited for long-lasting extremes:

$$W\left(\left\{x(t)\right\}_{t_{i} \leq t \leq t_{i+1}}\right) \propto \exp\left(k \int_{t_{i}}^{t_{i+1}} A\left(x(t)\right) dt\right)$$

Model used: PlaSim

- Land-atmosphere coupling configuration.
- Runs fast (less than 1hCPU/year)
- A control run of 1200 years (1990's climate) provides initial conditions for the algorithm
- Independent 8000-year long control run
- **Goal:** Compare the algorithm extreme event statistics with the long control run statistics.

Outcome: Sampling of extremely rare heatwave seasons

PDF of AMJ averaged temperature

We can recover the unbiased probability of each trajectory.

The knowledge of the trajectories probabilities is crucial to compute return time curves and any other statistics

Outcome: Return time curve

AMJ averaged temperature

Outcome: Return time curve

AMJ averaged temperature

Evolution of the temperature during centennial heatwave seasons

Centennial heatwave season

Composite maps of Zg500 AMJ anomaly

1000-year heatwave

season: $T_{\rm AMJ} \geq a_{1000}$

Can we trust the teleconnection pattern of the model?

T2m over the study region and Zg500.

MAMJ average

Perspective

Cost of running the algorithm: 300 years

but

we needed initial conditions: 1200-year long run

Solution:

Draw initial conditions from existing Single Model Large Ensembles

Key messages

- Extremely rare events matter
- Rare event algorithms can sample a large number of very extreme events
- The knowledge of the trajectories probabilities is crucial to compute any statistics.
- They provide a **precise estimate** of the (model-dependent) **return time curve**.
- Rare event simulations could be combined with Single Model Large
 Ensembles to explore extremely rare events in future warmer worlds

Our work is on arXiv: http://arxiv.org/abs/2404.07791

Appendix

Algorithm experiment and computational cost

1200 independent initial conditions (April 1st)

6 algorithm experiments with N=200 trajectories running from April to June

Total computational cost: 6*200*3 months = 300 years

Composite maps of Zg500 AMJ anomaly

Statistical significance (T-test)

0.990