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Extremely rare events matter

2003 West European heatwave 2021 Pacific Northwest heatwave

June 29, 2021 temperature compared with the 2014-2020 average
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Extremely rare events matter

An event that has a return time of 1000 years has:

*1/1000 chance to occur in any year
rt(z) = 1/P(X > x)
* 6% chance to occur in the next 60 years.

(In a stationary climate)




Difficulties in studying extremely rare events

e Observational records (60-150 years): Too short for
observing most events but useful for GEV/GPD fits

e Climate models: Obtaining good statistics on events that
have a return time of centuries using direct simulations
requires millennia of simulation -> extremely large
computation cost with the best models

e How to sample extremely rare events in climate models?
—> Rare event algorithms



Rare event algorithm’s principle
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Application: extreme heatwave seasons in South Asia

e Heatwave season = pre-monsoon
season (March to June)

e We want to sample extrema of

April-May-June (AMJ) averaged
temperature




Choice of the score function

e We resample according to weights W,, assigned to each trajectory
e The computation of the weights relies on a score function W ({z(%)})
e A good score function, tailored to the events of interest, is crucial to

the effectiveness of the algorithm.

We want to sample extremes of A ({z(t)}) = %/ A(z(t))dt, T = 90days
AMJ
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where A (z(t)) = = - Tom(r,t)dr N
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Model used: PlaSim

e Land-atmosphere coupling configuration.
e Runs fast (less than ThCPU/year)

e A control run of 1200 years (1990’s climate)
provides initial conditions for the algorithm

e Independent 8000-year long control run

e Goal: Compare the algorithm extreme event
statistics with the long control run statistics.




Outcome: Sampling of extremely rare heatwave seasons
PDF of AMJ averaged temperature
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We can recover the unbiased probability of each trajectory.

X
A Adapted from Wouters & Bouchet 2016
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The knowledge—o-f the trajectories probabilities is crucial to
compute return time curves and any other statistics



Outcome: Return time curve

AMJ averaged temperature
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Outcome: Return time curve

AMJ averaged temperature
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Evolution of the temperature during centennial heatwave seasons

Centennial heatwave season

42

o —————

— climatology o ~
-- climatoxo P '_: ----- -

S q95' q99

—— Control 8000 years

T(°C)

- ,,/IApI'I| | | | Mayl | IJune |
100 110 120 130 140 150 160 170 180
Day of year



Composite maps of Zg500 AMJ anomaly

Control 8000 years
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Can we trust the teleconnection pattern of the model ?

Correlation between
T2m over the study
region and Zg500.
MAMJ average

t2m.zg500 anoma ly (K.gpm)



Perspective

Cost of running the algorithm: 300 years
but

we needed initial conditions: 1200-year long run

Solution:
Draw initial conditions from existing

Single Model Large Ensembles




Key messages

e Extremely rare events matter
e Rare event algorithms can sample a large number of very extreme events

e The knowledge of the trajectories probabilities is crucial to compute any
statistics.

e They provide a precise estimate of the (model-dependent) return time curve.

e Rare event simulations could be combined with Single Model Large
Ensembles to explore extremely rare events in future warmer worlds

Our work is on arXiv: http://arxiv.org/abs/2404.07791
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Appendix



Algorithm experiment and computational cost

1200 independent initial conditions (April 1st)

6 algorithm experiments with N=200 trajectories running
from April to June

Total computational cost: 6*200*3 months = 300 years



Composite maps of Zg500 AMJ anomaly

1000-year heatwave season: Tang = Q1000
Control 8000 years Control 8009 years

Statistical
significance
(T-test)




