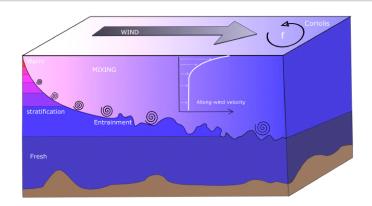

EXPERIMENTAL BOUNDARY LAYER TURBULENCE

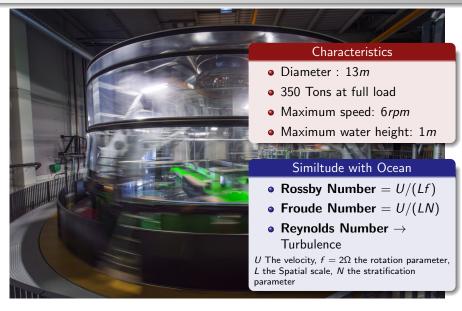
 $M.Coppin^{1,2}$ B. Deremble¹ E. Negretti² J. Sommeria² LEGI - UMR 5519

INTERFACES IN THE CLIMATE SYSTEM 28 May 2024


Observation of convection

Oceanic convection

- Organisation of convection
 - 1. Coherent convective structures
- Convective Turbulence
- Different convection regimes
 - 1. Forced/Free Convection
 - 2. Convection in rotation


Forced Convection

Processes influencing convection

- Rotation Ekman/ Inertial waves
- Wind forcing Energy input
- Stratification Potential energy modification

Coriolis Plateform

Credit:Cyril Fresillon/LEGI/CNRS Photothèque

Kato and Phillips experiments

FIGURE 1. The experimental apparatus.

Figure: Kato, H., Phillips, O.M., 1969. On the penetration of a turbulent layer into stratified fluid. Journal of Fluid Mechanics 37, 643-655.

Kato and Phillips experiments

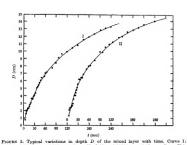
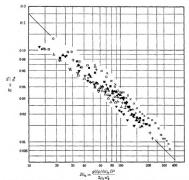
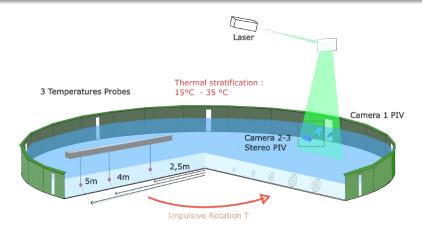


Figure 5. Typical variations in depth D of the mixed layer with time. Curve I: $d\rho/dz = 0.00192$, $\tau_0 = 0.995$ e.g.s. Curve II: $d\rho/dz = 0.00384$, $\tau_0 = 2.12$ e.g.s. Curve II is shifted to right by 120 seconds.




FIGURE 6. The entrainment coefficient E as a function of the overall Richardson number.

- Deepening of the mixed layer
- 2 Entrainement law

Results used in numerical modelling

Figure: Kato, H., Phillips, O.M., 1969. On the penetration of a turbulent layer into stratified fluid. Journal of Fluid Mechanics 37, 643-655.

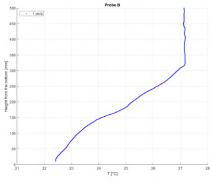
Presentation of the Experiences - Forced Convection

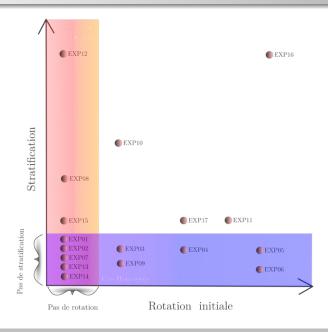
Forced convection experiments

Reproduce the Kato-Phillips

- Kantha, Phillips et Azad [1977] / Deardoff et Willis [1981]

Pictures of the bottom boundary layer




Thermal Stratification

- Thermal Stratification $\Delta T \sim 20^{\circ}\text{C}/30\text{cm}$ (20-15 last cm mixed)
- Filling time (4h15 / 50cm)
- Destruction of the stratification after 1 night

Experiences

Boundary layer

$$U(\delta(t)) = 95\% U_{\infty}$$

 U_{∞} The velocity of the fluid in the reference frame of the plate far from the wall

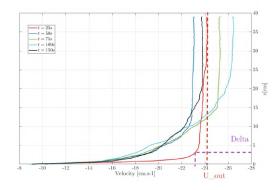
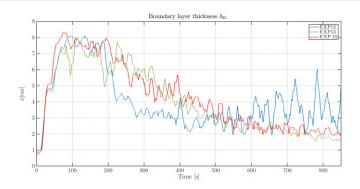
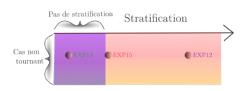
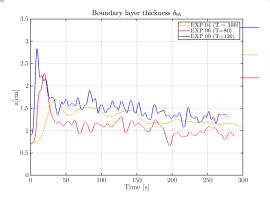


Figure: Definition of the thickness δ from the vertical velocity profile at different times in EXP 04

Vertical profil of the velocity for a Spin-up without initial rotation

Boundary layer $\delta(t)$

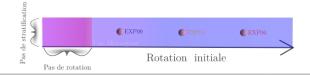




Figure: Spin-up with stratification and without rotation

Different regimes

- Initial Growth
- Decay dependent on stratification

Boundary layer $\delta(t) = 95\% U_{\infty}$



Ekman Layer

• Limite $\delta_{ek} \sim 0.3 u_*/f$

EXP 09	EXP 04	EXP 06
3.3 cm	2.78cm	2.2cm

Figure: Spin up without stratification and with rotation

Comparison with KP experiment

Similitude

- Shape: Cylindrical tanks.
- **Stratification:** KP (Salt) / Coriolis (Temperature).
- Stress: Circonferential direction

Differences

- Aspect Ratio:
 - KP: 152/28 (with inner cylinder)
 - Coriolis: 6500/50
- Measurements Available:
 - KP: Frictional torque and dye-visible mixing zone
 - Coriolis: Velocity and temperature measurements
- Rotation Effect:
 - KP: Not considered