Morphology of Stratocumulus clouds, boundary-layer dynamics and cloud feedback

Florent Brient Sorbonne Université - LMD/IPSL

Journées GDR Défis théoriques des sciences du climat

IPSL

28 mai 2024

Clouds of uncertainty

The **low cloud response** remains the most important uncertainty in climate-change projections for a given increase in carbon dioxide concentrations

Zelinka et al (2017)

ĥ

Climate sensitivity

Constraining cloud changes

Climate models that show a present-day **decrease** in cloud albedo with warming and **a high climate sensitivity seem more**

Observable low-cloud

Brient and Schneider (2016) Brient (2020)

Constraining cloud changes

Climate models underestimate StCu cloud feedback

Myers et al (2021)

Constraining cloud changes

Constraining cloud changes

Understanding: Modeling and parameterization

Climate models aim to represent climate variability for different time scales at length scales of around 50-100 km

Understanding: Modeling and parameterization

Climate models aim to represent climate variability for different time scales at length scales of around 50-100 km

 $\partial \overline{\phi}$ $\omega' \phi'$ Q_{rad} $\cdot \overline{v} \cdot \nabla \phi$ $\alpha(c-e)$ ω $\overline{\partial z}$ ∂z Resolved **Parameterized** ED **MF** $\rightarrow \phi \in \{q_t, \theta_l\}$ $\frac{1}{4}$ transport transport z_{top} $\rm d \rm K E$ Compensating subsidence: ω = $a_{\mathrm{u}}\omega_{\mathrm{u}} + (1-a_{\mathrm{u}})\omega_{\mathrm{d}}$

High-resolution modeling

Reproducing atmospheric boundary layers to better understanding **coherent structures, boundary-layer dynamics** and the **mesoscale organisation** High-Resolution models are the tool for that purpose

The Meso-Nh model is the French mesoscale non-hydrostatic model

Several boundary layers are simulated, three are mostly studied

<http://mesonh.aero.obs-mip.fr/mesonh57>

Domain size:

- \cdot 12.8x12.8 km² (25.6x25.6) $km²$ for StCu)
- Double periodic Resolution:
- $\triangle x = \Delta y = 25$ m (50m StCu)
- Δz=25m (10m StCu)
- Δt=1 sec

High-resolution modeling

The clear-sky convective boundary layer → no clouds !

Time evolution of averaged Relative Humidity (%)

Cross section of Total humidity (g/kg) at the inversion altitude (zi)

Coherent structures

coherent turbulent structures = parts of the flow that have logical interconnections and form a unified whole

Definition:

- **3D Coherent structures** are defined with **passive tracers** emitted at the surface, PBL-top and cloud base
- Ensemble of grid boxes satisfying 2 conditional sampling : $CS = \{s'(x,y,z) > m^* \sigma s(z)\}\$ based on *Couvreux et. al* (10) (with s'(x,y,z) anomalies of tracer concentrations) and CS $_{_{\mathrm{w}}}$ for positive/negative vertical velocity
- Object = **3D Contiguous** cells of positive CS (sharing face, edge, corner)

• Selected object = Object with volume **larger than V**

<https://gitlab.com/tropics/objects>

High-resolution modeling

Total humidity (g/kg) at the inversion altitude (zi)

High-resolution modeling

Coherent structures: Fluxes

Coherent structures cover **25% of the domain**, but contribute to 70% of resolved **heat** fluxes and 90% of **resolved** moisture fluxes

Downdrafts contribute to around **20%** of resolved fluxes

Coherent structures: Dynamics

Updrafts start positively buoyant at the surface and overshoot at the inversion.

Returning shells are located atop the boundary layer, and are similar to updrafts

Downdrafts also start **positively buoyancy**, but show **convergence** of air masses

 \rightarrow Adiabatic triggering

Schematic of the dry convective boundary layer

Schematic of the cumulus boundary layer

Spoke pattern at the surface

What about stratocumulus?

What about stratocumulus?

Liquid Water Path (g/m²)

Coherent structures: Fluxes

Coherent structures cover **27% of the domain**, but contributes to **78%** of resolved moisture fluxes

Cloud-top downdrafts to around **40% of resolved fluxes**

Coherent structures: Dynamics *Nighttime (t+21h)*

Updrafts and cloud-top downdrafts have opposite characteristics

Despite strong radiative cooling, cloud-top downdrafts start **positively buoyancy** and undergo **convergence** of air masses \rightarrow Similarities with the dry convective boundary layer !

Schematic of the stratocumulus boundary layer

Nighttime StCu

Resilient cloud pattern

At nighttime

- Boundary layer is coupled
- **Downdrafts contribute to 80% of fluxes**
- \bullet

Schematic of the stratocumulus boundary layer

Schematic of the stratocumulus boundary layer

At daytime

- Most updrafts are located at the center of the cells, most downdrafts at their surroundings
- Updraft contribute to 50% of fluxes.
- **Decoupling** reduces links between surface and cloud top
- **Aspect ratio of 10-30**

At nighttime

- Boundary layer is coupled
- **Downdrafts contribute to 80% of fluxes**
- Resilient cloud pattern of the daytime organization

Nighttime StCu

Intermediate conclusions and remaining questions

Conclusions

- Passive tracer analysis is really efficient to identify and study **coherent structures**, which contribute to **80% of resolved fluxe**s while covering only 25 % of the domain
- Downdrafts are **adiabatically** triggered in all boundary layers. Negative buoyancy is enhanced by radiative/evaporative cooling in stratocumulus
- **Interaction between updrafts and downdrafts** shape the boundary layer organisation

Questions to go further

- Q1: Why have the stratocumulus a so large aspect ratio?
- Q2 :Is there some unified theory for **downdrafts' triggering** in all well-mixed layers?
- Q3: How should we **represent** downdrafts in climate models?
- Q4: Can we identify robust low-cloud feedback mechanisms?

Morphology Of stratocumulus, BoundarY-layer DYnamics, and Climate Change (MOBYDYC) – ANR Project (2023-2027)

Cloud morphology (theory)

A. Alexakis, L. Biferale / Physics Reports 767-769 (2018) 1-101

Classic 3D isotropic Kolmogorov cascade All vortices lose energy with surrounding smaller eddies

A. Alexakis, L. Biferale / Physics Reports 767-769 (2018) 1-101

2D double cascade of energy. Inverse energy cascade suggest upscale growth above the length of energy injection

Work in progress

My StCu LES

Cloud morphology (observations)

An unified theory for atmospheric boundary layer organisation?

• Definition of the Rayleigh Bénard convection (RBC):

"A horizontal fluid layer of height d is confined between two thermally well conduction, parallels plates. When the difference DT = Tb - Tt between the bottomplate temperature and the top-plate temperature exceeds a critical value, the conductive motionless state is unstable and convection sets in. The simplest pattern which can occur is that of straight, parallel convection rolls" (Bodenschatz et. al, 10)

- **Similarities** between RBC and the Atmospheric Boundary Layer?
- \sim Fluid with high Rayleigh number (convection)
- \sim Warmer surface, colder troposphere (vertical T gradient)
- \sim Strong inversion as top plate?
- \sim Sensitivity of fluid proprieties to T and P solved by taking into account Non-Oberbeck-Boussinesq (NOB) effects (hexagons)
- **Differences** between RBC and the atmospheric BL?
- The top-plate is **not rigid** (entrainment occur)
- **Phase change** can modify RBC inside the convective layer and/or above (cumulus layer)
- The **aspect ratio** of cells is larger than the RBC theory (30-50 for StCu >> 1-2).

Conclusions

- Questions to go further
	- *Q1: Why has the stratocumulus a so large aspect ratio? Can we explain the upscale growth during the day? What is the exact role of decoupling in this evolution?*
		- **Power spectra** show an upscale growth of structures in clear-sky and stratocumulus
	- *Q2 :Is there some unified theory to understand downdrafts' triggering in all well-mixed layers?*
		- Structural organisation suggest that **Rayeigh-Bénard convection** is a good candidate
		- Still need to figure what are the exact role of entrainment, condensation, heterogeneities in modifying the canonical RBC
	- *Q3: How should we represent downdrafts in climate models?*
		- **Coherent subsiding structures** need to be represented, compensating subsidence not enough
	- *Q4: Can we highlight robust low-cloud feedback mechanisms?*
		- Not yet

2026 Workshop idea:

"Theoretical advances in understanding the organization of atmospheric (oceanic?) boundary layers" (or something like that) - Link with GDR Defis théoriques, DEPHY, GASS, Annual Workshop Organisation Convection **Thank You**

IPSL \subset

